R

»
PRINCIPLES OF GEOMETRY

)
Q’Z)

) -.};}'_: f;_:_,;if,, \\\\\\\ o
‘fff § 0 80¢
i,



CAMBRIDGE ¢
UNIVERSITY PRESS g@
LONDON! BENTLEY HOUSE 0
NEW YORE, TOROGNTO, BOMBAY %‘
CALLCUTTA, MADRAS: MACMILLAN &

TOKYO: MARUZEN COMPANY LTD &
All rights reserved »(}

www.dbraulibrary.org.in Q

s.

W



2PN

"y
ThE Freune o BRIRTEEN LINFS AND FIPTREN POINTS, IN 8PAGK OF FOUR DIME

/2} (See Ch. V.)

NBIONS,

C
&

N

6&
Q



PRINCIPLES OF GEOMETRY

BY

H. F. BAKER, Sc¢.D., LL.D., F.R.S,,

LOWNDEAK PROFASSOR OF ASTRONOMY AND GEOMETRY, AND FELLOW OF
§T JOHN'S COLLEGE, TN THE UNIVERSITY OF CAMERIDGE

N\
O
VOLUME IV e\

« \J/

HIGHER GEOMETRY {5 3

BEING ILLUSTRATIONS OF THE UTILLTg\\OF THE
CONSIDERATION OF HIGHER SPACE,BESPECIALLY
OF FOUR AND FIVE DIMENSIONS

www.%hl‘%)ﬂbl'ary.org.in

CAMBRIDGE

- y‘ﬁ“;”’_@g‘;ﬂ E‘{ UNIVERSITY PRESS
. {é;f‘ Dso [ \“ 11940
q \"\"\.JWW""/ .
A GR 4 -

o ATl



First Edition 1925 \3”
Reprinted 1940 (é

O

S

www.dbraulibrary.org.in éQ

&

”\“?}
O
O

PRINTED IN GREAT BRITATN



PREFACE

HE present volume, the first written and the most revised, of

the book; for which indeed, mostly, the earlier volumes were
undertaken, still bears many marks of the difficulty of compressing
the matterinto brief compass. But the writer hopes that it may
scem to the reader as remarkable as it does to him, that it should
“be possible to comprchend under one point of view, and thaft\so
simple, the introduction to nearly all the surfaces ordinarily, duudied
in the geometry of three dimensions, as well as the ucsf:a] line
geometry. Chapters v, v1, v seelt to make clear tlx&b this is so.
To these the earlier chapters are auxiliary. But Ehapters 11 and v
have been introduced as much for their ow 1) 'Qﬁaerest as for their
illustrative valuc; the results obt:ameddi@bfhéjsj;bltarg,gbgmem arc
not required in the subsequent pages, Ib1s hoped that the Table
of Contents, and the Index, may Imﬂ(e it easy to use the volume.

S IL E. B,

1 June 1925,

P4\

Acknowledgments e (hle to those who have very kindly sug-
gested corrections i t\:‘ text of this Volume; thanks are also due
to the Um\erslt\ Press for their willingness to undcrtake this
BReprint undcg\p&eaent circumstances, and for their usual care in
the work.\Ii\'f.‘; hoped also that the reader will consult the Notes
added,‘iﬁ}n Appendix, to throw further light on various Scctions.

. Tﬁbj’éhcuries touched in this. Volume are developments of modern
{zﬂo}liétry made hy diverse minds of many lands; in the writer’s
view, it is mot vain te find, in the beauty that many of them
possess, a ground for hope, amid the grievous distresses of the

present time,
H. T. B.
September 1939,
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CHAPTER 1

INTRODUCTORY. RELATIONS OF THE GEOMETRY
OF TWO, THREE, FOUR AND FIVE DIMENSIONS

"l present chapter consists of various examples of the interest
and jmportance of the comparison of the geowetry of spaces of\
different dimensions, The first section (pp. 1—82) is concepned
with relations between theorcms in two and in three dimensions.
The second section (pp. 32—40) deals with the representatien in
four dimensions of some results belonging o ordinapéPspace of
three dimensions. The last section (pp. 40—64) deals ‘with the
employment of space of five dimensions for the eousidcration of
properties avising both in three and in two dimensiond. Some few
references oceur Lo space of any numbe&&ﬁdw@gghryl org.in

SECTION 1. THEOREMS OF TWO ANDLHREE DIMENSIONS

The conics touching the fives frem’six arbitrary lines of
a plane. Let three lines, p, g, 7, begiven in a plane, as well as a
fourth line containing two points,\Iy J; let any conic be drawn
touching the four lines; let g be the conie, through the points I,
J, which contains the ’thregiintersections of the lines p, g, 7
then this conic ¢ passes flifongh the point, §, in which intersect
the tangents from I, Jifo, the former conie. Or, in other words
(VoL m, p. 81), the citele ‘through the intersections of three tan-
gents of a parabolgycontains the focus of this parabola. Thus if
four lines be givetipbeside the line which contains the points I, J,
the conic touching the five lines being then definite, the four
conics, all throngh I, J, each containing the infersections of three
of the fouf ‘given lines, meet in a point, namely, the point; S, in
which theMangents from I, J to the former conie interseet (Vol. 1,

. 82} namcly, these are four circles meeting in the focus of
the, parabola. If now, finally, five lines be given, beside the line
containing the poinis I, J, there will be five parabolas, each a conie
touching the last line and four of the others, and five faci,
&)y Suy .00 85 It is the case that the circle containing any three of
these foci passes through the other two, that is, that the seven
points 8, ..., 8, I, J lie on a conic. Of this theorem a proof was
given by Clifford (“A synthetic proof of Miquel’s theorem,”
Math. Papers, 1882, p. 88), with the help of certain particular
cubie curves,

B. . IV, 1
H
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A circle through the focus, S, of a parabola is a couie containing
the intersections of three tangents of the parabola, nawely 1J, S,
JS, and may be said to be triangularly circumscribed to the para-
bola. Conversely, any conic triangularly circumscribed to a conic
and meeting a tangent of this in points 7, J, contains the intersee-
tion, 8, of the tangents to this from I and J; it may, therefore, be
regarded as a circle through the focus of a parabola, when I and J
are taken as the Absolute points. Thus the theorem above referved
to may be stated by saying that, if @, , ¢,d, " and / be six arbitragg™
lines given in a plane, and I, J be two arbitrary given points of tie
Jine ¢, and five conics be defined each as touching Z and four pfthe 1
lines a, &, ¢, d, I’, then there exists a conic passing through MNnd J 2
which is triangularly circumscribed to these five 0011ics,§'."fl"1c sym- |

i
3

metry inay suggest that this latter is also triangularly, elvcunscribed

to the conic which is defined by touching the five lids «, b, ¢, d, 15
this is in fact the case. We thus have six conicg,&adh touching five
of the six given lines; and each of the six lings$ouches five of the
conies. There cannot be two conics throughthe points, I, J, of i,
both triangulatbyacibidwargesbednto the six conies; such a conic, If
existent, is defined by the points I Wvand three of the conics
touching the line IJ, namely as\cortaining the interscetions,

S qus, Sy, of the tangents from IpJd to these three conies, respec-
tively. Ny '

To prove this symmetricallresult we way proceed as follows:
Denote the plane of the sitngiven lines, a, b, ¢, d, {, I’ by =. Draw
through each of the lined\a; b, ¢, d an arbitrary plane, denoting the
intersections of the e'\in’threcs by 4, B, €, D, of which D is the
intersection of the plhnes through a, b, ¢, and so on. Tt is assumed
that 4, B, C, D.atg vot in a planc, Through the six points con-
sisting of 4, B\, D and the two arbitrary points I, J, of the line
1, there cansbie’put a definite cubic curve, which we denote hy «.
This will¢neet the plane w in another point beside I and J; say,in
E. Thepythrough the five puints 4, B, C, D, E there can he drawn
anothér cubic curve, v, to have the line I’ for chord, meeting this,
sappose, in the points 17, J* (Vol. uy, p. 189). We prove that the

{edmic, @, containing the five points [, J, B, I', J', is triangularly
¢irenmseribed to the six conics touching the fives of the six given
lines @, &, ¢, d, &, I'. It is thus independent of the planes drawn
through a, &, ¢, d. :

The conic @ is the infersection with the plane w of the quadric,
A, defined by the ninc points 4, B, €, D, E, I, J, I', J'; the cubic
eurves, v, v , each meeting £ in seven points, lie on this quadric.
'Cubie curves lying on & quadric are of two families, since such a
«ceurve meets all generators of the surface, of one system of generators,
in ene point, and all generators of the other system in two points;
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two cubics of the same family have four common points, but two
cubices of different families have five common points (Vol. 111, p. 139).
Thus the curves «, " are of different families on 0.

We prove now, first, that the conic o is triangularly circumseribed
to the conic touching the lines a, %, ¢, d, I3 namely by obtaining
triads of points of @ whose joins touch this conie {a, &, ¢, 4, ). Let
P be any point of @; through this, and the other four points,
4, B, C, D, of £}, there can be drawn, lying on Q, a cubie curve of
the same family as v (Vol. mu, p. 129). This curve will meet o in
two further points, say @ and RB. Either of these, with 4, B, C, I,
determines the eubie curve, and so determines the other two ofzthe
three points, P, @, K, of w. Thus, as £ varics on o, the nads
P, &, R form an involution of sets of threc points thel‘eotg,,gllﬁ the
lines @F, RP, PR all touch a conic {Vol. 11, p. 135) ,4his? conic,
which we may denote by X, is evidently triangularly ifséribed in w.
We prove that & is the conic touching a, &, ¢, d 0¥ considering
different positions of P. When P is at E, the ling @R is the line /;
thus A tooches I In general the cubic uurve.’ok}rough A, B, C, D,
P, @, B is projected from P by a quadsitafenatipshich, wy, he
defined as that containing P4, PB, PCORD and a par ictl:%tﬁll‘. onc
of the two generators of Q at that point B/ But when P is at one of
the two intersections of the line d &fith @, this cone degenerates,
becoming the aggregate of the plane ABC, which contamns 4, and
the planc joining PI to the pasficular generator at P spoken of’
one of the two lines PQ, PR, in which the cone mects the plane =,
is thus the line d. Therefq@ the conic A fouches 4. By a similar
argument it touches ¢ biic) :

To prove that the bm\ric w is triangularly eirenmsoribed to the
conie toaching a, b,@d and {', we describe a cubic curve through
a varying pointa Blef  and throngh 4, B, C, D, Iying on (, but
of the same family as the curve ',

That the gonic touching a, b, ¢, and hoth of {and 7', is friangu-
larly inscyﬂied’ to w, we likewise prove by obtaining an involution
of sets of{threc points lying on m. For this, let the points in which
the lin&*4, D3, DC meet the plane = be denoted, respectively,
by«z\%[,} B, and (', and consider the conies drawn through the four
potuts 4, B, C, and E. The sets of three peints other than E in
which these conies meet @ are then sets of such an involution
(Vol. 1, p. 138), and the three joins of the points of such a set arc
tangents of' a conic, which we denote by 8. One conic through
A, By, C) and F consists of the two lines B,C, and 4, K ; thus &
touches B,C,, which is the line 4. Simiarlv § touches & and ¢
Agnin, the conics through 4:, B, €, aud £ mav be defined by
quadric cones, of vertex D, containing D4, DB, DC and DE ; onc
such cone, however, is the cone which contains the cubic curve «, and

12
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this meets the conic o in the points Z, J. "Thus the conic § touches

the line 2. Another such cone is that containing the curve o/, which - -

meets @ in I’ and J’. Thus & also touches &', It is thus shewn that
the conic touching a, b, ¢ and /, I’ is triangularly inscribed in w.
An analogous argument proves @ to be triangularly eiretimscribed
to the three conics touching I, I’ and, respectively, &, ¢, d; ¢, a, d;
a, b, d.

The theorem stated is thus completely established. 1t has been
remarked that the conic obtained, triangularly circumseribédNo
the six primary conics, is uniquely determined by its intersec-
tions, I, J, with one of the six given lines, Z. It ix clear, JoWever,

from the reasoning given that the conic is also determinitd when E

is given ; its intersections with 7 being on the tangegts from E to
the conic touching 4, b, ¢, d, 7, and its intersections4ith 7 heing on
the tangents from E to the eonic touching aadmg, ¢, I, while the
conie Iimasses through E. Thus, whatever be\the planes, drawn
through a, b, ¢, d, by which 4, B, C, D argsdetermined, the cubic
curve drawn through E, A} BI C, D, to have'? for chord, meets Z in
the s FWo BRIHHEE Ty O & similartyyfor 2",

Exr. 1. ¥ B, I,J be three pointsiof a cubic curve i space, of
which 4, B, C, D are four othertpoints, the two axial pencils of
plancs joining EI and IJ to 4,8, €, D are related to one another;
and the former is related ta.the range on EI determined by the
four planes containing 4, B,°€, D, the latter bein g similarly related
to the range which thes¢'four planes determine on 7J. Wherefore,
there is a conic, in th€ plane EXJ, touching the four lines in which
this plane is met by the four plancs containing 4, B, C, D, and also
touching EI, 1JX\By parity of reasoning this same conic touches
also the line BT~
. E«.2. Ifiih the construction above, the lines a, b, ¢, d, /, lying
in the plang’t = 0, be taken to be

.‘.%:“0; ¥=0, 5=0, ar+ by + cx =0, le+my +nz=0,
thesplanes DBC, DCA4, DAB, ABC being
A

\™ =0, y=0, x=0, ar+ by +ex—t=0,
and the point B be (&, 4, ¢, 0), ptove that the points I, J lie on

- the conic in the plane ¢ =0 given by

2 E(mb T — ey 4y (et — la™)+ 58 (le ' —mb =0,

this les on the cone, of vertex I, containing the cubic curve
through 4, B, C, D, E which has the line { for chord.

Er. 3. Hence infer that if the six given lines of the original
plane be of equations

z=0, y=0, =0, a‘rm+bry+cr5=05 (r=1,2, 3),

T T
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then the general conic which is triangualarly circumseribed to the
six conles touching the fives of these lines has for equation

Almae+ oy + az) (@uaaxYZ + bbyZX + 0,6,2X7Y)
HA, X+ B Y +C 2y (A A Xyx + B, B, Yex + C,Cwy) =0,

where A is the determinant (g, by, Csh and 4,, B;, ... are the minors

of @y, by, ... therein, while (X Y, Z) is an arbitrary peint, such that

(o 4.X, b RY, 602 1s the point E, or (£, , {), of the fore-

golng thcon Thlb equation, it may easﬂy be scen, 1s unaltered by

{\(hw.l (‘hamge of the suffixcs, X, ¥, Z being unaltered ; it is de-
rived from a form obiained aJcrehlaloaJ]y by MrI' P \Vhlte (Camf)\
Pril. Proc. xxim, 1924, p. 11). 1f we take

X' =AdX+BYACZ Y =AX+BY+CZ %= AX'«+
and also . .M'\'\ /
r=ma+byt+oz y=ar+.., F=q¥. .,
the equation is also capable of the form \ }

b lib
«Z(BCLYZ’—}-BC?;ZX +Bscayﬁ\1,}'au113ry01gln
+ AX (e X'y's +boc2Y’zw + by, Z'r 'y =0,

and of two other forms, ohtained from this by cyelieal interchange
of a, b, ¢, without change of X', N y A

I'urther, if we take the tluee points Py, P, P;, wheve P, is of
coordinates (a4, X, LBY, o,7C.Z), and denote the line
apx + by +c,5=0 by Z\\., an,d\the points (1, 0, 0), {0,1,0), (0,0, 1)
by A,, B, C,, and thon'define a conic, §,, as that through
{4,, B, €y, P,, B,), acohie, §,, as that through (4, B,, C,, Ps, P)
and a conic, 8, sunrlar]y, it will be found that the three pairs of
intersections (S, S &) (S, 3) lie on a eonic through
P, P,, P,, this\eenic, through these nine points, being the conic
triangularly gifeumseribed to the six primary conics.

The readel’ may also be reminded of Tayler’s theorem (Vol. 1,
p. 61), that the poles of an arbitrary line in regard to the six primary
wnu,w&le on another conic,

B4, Any six lines of a plane can in fact be regarded as the
p\]ectlons of six chords of a cuble curve, from a point of this curve,
these chords having the pl(l{;lelty that every five of them have a
common transversal. I or, taking the six conics touching the fives
of the given lines, let the conie which is trlangllla.r]} (ltu]mscrlhed
to these have its equation put in the form 2z —* =0, as is possible
in an infinite number of ways. Then with an arblttary point for
the intersection of planes =0, =0, x=0, this conic 1s on the
cone projecting {rom this point the cublc curve whose points are
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given by (€, 6, 8, 1). The tangent line of any vonic given in the
original plane, £ =0, may then be defined by a phue,

' ua 4+ vy +wn =0,

through the point (0, 0, 0, 1), and the tangential cquation of the
conic may be taken in the form

cw+ a vt — et —bvw — (G4 oy wn — Ve =0,

in which #, 7, w are tangential coordinates, The chord of the cubic

curve joining the points, other than (0, 0, 0,1), n which the plages

meets the curve, hias for coordinates the six A\

£
7'\
thus the equation of the conic expresses that the tangent fine of
this is the projection of a chord of the cubic curvegshieh belongs
to the linear complex {a, b, ¢, «, V', ¢'). In pasticiilar, if

ad + 6 + e’ =10,

the conie is tpiangularly inseribed to theswonic az — 2 =90, as we
easily velfy"( QEINORETGOHE Y. Maz. . & 1872, p. 47). Whenee,
six conics triangularly inseribed to Jwst 72 =0 can be regarded
as having the equations (r =1, ...,’(.j)' “ '

7 ¢ Al S
4 Lo — - m g = (1 L) e — e =0,

each being obtained by projeeting the chords of the cubic curve
which mect a line of coordinates (/. my, n,, L, 72, 22y). When the
six conics touch the fives 0f six lines, so that every five of them have
a common tangent, these lines are obtained by projection from six
chords of the cubicyforming with the lines (7., m,, ...) a double
six of lines. (OfyWakeford, Proc. Lond. Math. Soc., xv, 1916,
p.340) A

It may bewemarked, too, that the conie, (7, m,, ...}, touching the
projectipnsof the chords of the cubie which mect the line (Z,, 7y, . s
has, l?\&de five of the originally given six lines, as a sixth tangent,
the Bine 2w +m,/y + n,2=0. If we take the intersection of this
. ith"the remaining onc of the six original lines, we obtain onc of
~\six points which lie on a conie. (Cf. Vol, 1, p. 136, Ex. 8, and

Wi — B, ww, — W, wu, Ui, Wl

\U/p. 201.)

Representation of a plane upon a quadric, Consider 2
quadric surface, {3 ; and, upon this, a point, U, which is to be taken
as centre of projection. Consider also a plane, o, Let the generators
at U, of the quadric (, meet the plane = in the points I and J.
Any plane mects the generators; and, thus, the conic, in which
is met by any plane which does not pass through U, is projected
from U into a conic of the {)lane @ which passes through 7 and J.
Regarding I and J as Absolute points, we may then speak of this

JRERPRCEE
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conic as a circle. Conversely, any conie, in the plane =, which passes
through I and J, lies on a gquadric cone of vertex U ; this cone con-
tains the generators UI, UJ ; its remaining interscetion with & is
thus a corve of the second order, namely a plane section, Thus
planc sections of the quadric £, not containing U, and circles of
the plane o, are transformable into one another by projection from
U. Sections of by planes through U project into lines of @, and
conversely.

Let a be any conic section of {2 not passing through /; and let
A be the pole of the plane of &, in regard to £2. Let o be the circle
of the plane w which arises by projection of « from U. We proye,
that the line U4 meets the plane w in the pole, in regard to o{0f
the line LJ; that is, that the projection of 4 is the centre of the
cirele o, Let the line in which the tangent plane at Upaf the
quadric 0, is met by the plane of «, be denoted by #ayund the
point in which the line UA nmeets the plane of « he depoted by A,.
The line U4 1s the polar line of %, in regard to 2gsthis the polar
plane of A, contains u, and Izj[{J ils the pole of ‘fu\in regard to the
conic ¢ s0 that any line in the plane of by ) mects # in
the harmonic conjugsate of 4,, i&) regardﬁ%}gﬁ}i}%ﬁﬁg?ﬁ%&%dx
this line meets the conic o This rclation™persists after projection
from U7 ; and this proves the staterment made. Conversely, however,
in the correspondence between the pahats of the plane =, and the
points of the quadric £, the centreraf the circle corresponds to the
point, other than U, in which thedine U4 mects £2.

We have explained (Vol. i \p. 166} how to measure the angle
between two lines of a planessay of equations P+AQ=0, P+ =0,
with respect to two oth l‘{liﬂés P=0, @=0, by means of the ratie
Afp. In particular, the angle between two lines lying in the tangent
plane of the quadric\(}, at a poiut 0, aud meeting at this point,
may be measuredwith respect to the generators of the quafﬁ‘ic at
this point. As ath of these generators meets one of the generators
at U, if O préjeet from U into O on the plane =, the generators at
0 project J&ﬁo the lines 'L, O'J. "Thus the angle in question is that
betweenytlie lines in the plane <, into which the two original tan-
gents/of %2 at O project, when measured with respect to the two
Adisdlute points I, J of the plane w. If Obe one of the intersections
of o plane seetions of the quadric {2, the other being &, and the
lines taken at O be the two tangents of these sections at O, the flat
peneil in the tangent plane at O, consisting of these lines and the
generators at O, is the section by the tangent planc at O of the
axial pencil consisting of the two planes, which meet in 0@, and
the two tangent planes of {2 drawn from: the line 0@ ; for cach of
these tangent planes contains a generator at O and a gencrator at
Q. Thus the angle in question is that of the planes of the two
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sections measured in regard to the two tangent planes of Q drawn .
from 0Q. If, in particular, the planes of the two sections are con-
jugate to one another, each containing the pole of the other, then
they are harmonic in regard to the two tangent plaues of ) drawn
through their line of intersection. Thus we reach the results that
two circles in the plane = infersect at the same angle at both their
common points, this being the angle between the corresponding
planes of the quadric ) when suitably measured, and that th
circles cut at right angles when these planes are coujugate to oge
another (cf. Vol. 1, p. 198). By considering scctions of O thrbugh
U, all conjugate to a chosen plane section, we obtain the resdlt $hat
all lines through the centre of a circle cut this at right aneles; by
considering plane sections all passing through a poin€™not on {2,
this being the pole of a certain section, we obtain thdaggregate of
all circles in the plane = which cut a certain cirelesnt, right angles;
by considering sections of O by planes throughaine, we oblain a
system of coaxial circles, whose limiting pojgts*are the projections
af the two poi E&.I ]ﬂhi({h 0 is met by thefpolar line of the given
line, whild %eeiohs By platics fhrough MRS polar line give circles
cutting at right angles those of the ‘opiginal systen; thenec, two
points of Q,lying on a line through-the pole of a chosen section of
2, project into two points whiel dre conjugate in rcgard to the

- ecircle into which the chosenssection projeets; and so on, all the
familiar (Froperties of circles being easily interpretable. It may be
remarked that the anglg‘between two plane sectious of (2, which
we have identified with ‘the angle between two circles, is also the
same as the interyakbetween the points which are the poles of these
plane sections, mehsured with tespect to the intersections with ( of
the join of thege poles.

The genéralised Miguel theorem, We have given (Vol. 1,
p- 70) the theorem that if 1) E, F be any points respectively on the
joins, BE,CA, AR, of three points of a plane, then the three circles
AEF BFD,CDEmeet in a point. We considerthis resultin particular
froibour present point of view. There is a correspouding theorem

o for any number of dimensions, capable of similar proof.

3} "{Roberts, Proc, Lond. Math, Soc., z1x (1881, p. 117; ihid., xzv (1898}, p. 306;

Grace, Tranz, Camb. Phil. Soe., zv1 {1897), p. 168 Haskell, drch. 4. Hath. @
Phys., v (1903), p. 278.,) » 2x {1897), p. 168; r e e

Suppose we have, in space of three dimensions, any three planes
passing through a point, O, say #=0, y =0, =0, and take three
arbitrary points: 4 on the line of intersection of % =0,2=0; Bon
the line of intersection of x=0, #=0,aud C on the line #=0, =0
and then take, on the plane OBC, the point D; on the plane 0C4,
the point £, and on the plane 04B, the point F; the planes AEF,
BFD, CDE will meet in a point, say €. If O is taken on an arbi-
trary given quadric, and 4, B, € are the intersections with this

£
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quadric of the lines iy = 0, z=0, ete., while D, E, F are on the sections
of this quadric by the planes =0, y =0, 5=0, respectively, then
the point @ also lics on this quadric. For, all quadrics thr{)ﬁgh the
seven points O, 4, B, C, D, E, ¥ have in common a further point;
of such quadrics a degenevate one consists of the two planes OBCD,
AEF ; sunother of the planes OCAE, BFD, and a third of the planes
0A4BF, CDE. As these degenerate quadries all contain the point
4, so does the original. When, now, we project the points of the
given quadric from O, on to an arbitrary plane, the plane » =0 _{
gives a line containing the projections of the points B, C, D, and
so on, and the section of the quadric by the plane AEF gives\a)
cirele; the threc such circles meet in the peint which is the pro-
jection of . This proves the thcorem of Miquel. PAY

It is equally the case that, in spacc of three dimensions, jt 4, B, C, D
be any four points, and points, P, @, B, F’, €', R’ be takeh arbitrarily,
respectively on the lines DA, DB, DC, BC, C4, 48, then the four
spheres, each containing one of the four points 48, C, D and also
the thiee points on the joins of this to the other+points, meet in a
point. These are the spheres APQ'R/, BRR AT GRP R, BPR.
A proof is as follows. In space of fourddimensions, consider four
threcfolds, =0, =0, 2=0, ¢=0, meeting’in 2 point O; any three
of these threefolds will meet in a lineXhrough O, and upon each of
the four lines so obtained a poinkinay be taken; let the point on
the line 5 =0, 2 =0, ¢ =0 be 4, he others being B, C, D, of which,
for example, D is on #=0,,%9=0, x=0. Upon the plane y=0,
z=0, which contains the linas 04, OD, let the point P be taken,
arbitrarily ; and, similarly, the points € and B be taken on the
plancs OBD, OCD, resp\cr\tively, as also P', @', B’ on the respective
planes OBC, 0CA, O4B, Then consider the threefolds APR'E’,
BQRR'P’, CRP'QDPQR, which we denote, respectively, by £ =0,
5=0, £=0, 7,=0% and let 7 be their point of intersection. It can
then be shewmithat T' lies on any quadric threefold constructed to
contain ﬂ%xpoints 0,48, C,D P, Q R P,Q,R. In fact the
cquatigi of a quadric threefold, in fourfold space, contains fifteen
tergsysthus a quadric through the eleven specified points will be
of“the form MU, +...+AU, =0, where Ay, .5 A are arbitrary,
and U, =0, ..., U,=0 are four such quadrics, which we suppose to
be lincarly independent. It follows that any quadric through the
eleven specified points will also pass through the remaming 2*— 11,
ov {ive, common points of these four quadrics. This assumes that
these four quadries have ne commeon curve, or surface, and intersect
iu sixteen points. We can, however, at once specify four degencrate
quadrics through the eleven points, namely 2 =0, yn = 0, z{=0,
=03 for instance z =0 contains O, B, C, D, P, @, R, and £=0
contains 4, P, Q, R', Thus, every quadric through the eleven
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points contains the point, 7', common to £=0, n=0, {=0, =0,
"This is the result desired. The four other common points of these
four quadries, which equally lie on any quadric through the eleven
points, are the points such as =0, {=0, =0, 2=0. Tt can be
shewn now that, by projection from O upon any threcfold space, the
theorem enunciated in regard to the four spheres is obtained. But,
for convenienee, the discussion of the derivation of a sphere by pro-
jection from space of four dimensions is deferred to a later seetion
of this chapter {p. 86). A similar proof holds in higher spdeg .
this depends on a theorem that, in space of n dimensions, all
quadric (n — 1)-folds through 4 (n + 1) + 1 general pointg fyelex-
pressible by » such quadrics, and pass through 2% —1—win +1)
other points. N
From the Miquel theorem in a plane we were/able to infer
{(Val 1, p. 71) that, if four arbitrary lines be givemXhe circles each
containing the intersections of three of these linds,four in all, would
mect in a point; namely, by supposing the points D, k, I, in the
enunciationwgivéhraklaveyspobg. im line. Fhis theorem, aseribed to
Wallace (Scoticus, Leybowrn’s Math. Repéay't, 1806, p. 170), will be
. considered below (p. 18). If, in the colrésponding theorcm above
considered, for four spheres in spacesdf three dimensions, we suppose
the six ﬁ\\oints P, Q, R, P, Q, Rix0'be in a plane, the tour spheres
there taken will still meet in a'point, but this point will be on the
plane containing the six poifits, This is obvious by considering the
Wallace theorem for the four lines in this plane which are obtained
by the intersections of;’th\is plane with the four planes BCD, CAD,
ABD, ABC; the founspheres of the theorem meet this plane in
circles. We canpiat, therefore, mo on to infer that the sphere
through 4, B, €3 passes through the poiut of intersection of the
first four sphicres, as in the plane casc; the five spheres mect in
fours in points lying one on each of the five planes involved. It will
be seen below (p. 59) that the gencralisation of the Wallace
thco;:c’lh,_which thus does not hold in space of three dimensions,
ht')ld's‘.neverthe]ess in space of four dimensions, and in space of any
e number of dimensions (see Grace, as above, p. 163). )
) %=z 1. Through five points, 4, B, C, D, E, in three dimensions,
can be drawn five linearly independent quadvics. The conics in
which these meet: an arbitrary plane, @, arc also linearly inde-
pendent, and determine a definite conic, o, inpolar to all of these.
Tht}s every qpadl‘ir: through 4, B, C, D, E weets the plane = n 2
conic which is outpolar to . Such a quadric is formed by the
planc ABC taken with any plane through the line DE; hence the
-point in which @ is met by DE is the pole, in regard te o, of the
line in which = 1 met by the plane 4BC. Thus the system of ten
points and lines, in which the Joining lines and planes of 4, B, €,
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D, E mect the plune w, is self-polar in regard to the conic o. A
similar proof holds for the theorem obtained similarly by taking
{(n+ 2) points in space of n dimensions (ef. Vol. 11, p. 218), the
number of linearly independent quadric (n —1)-folds which pass
through (n-+2) general points, namely n(n+1)—1, being one
less than the number of terms in the equation of a quadric (n — 2)-
fold in a space of (n — 1) dinensions.

Ir. 2. A cubic curve through five points, 4, B, C, D, E, meets
an arbitrary plane, o, in a triad which 1s self-polar in regard to the
conie, ¢, determined in = by these five points, as in Ex. 1. For the,
three lincarly independent quadrics, through the curve, meet @ anJy
conics, outpolar to o, all passing through the points of this tfiad.
The corresponding Lheorem for a rational curve of order n, Alirough
(n + 2) points of space of n dimensions, can be similarly proved.

Fx. 3. The dual of the theorem rcferred to in Ex,d§s that, if
we have five planes, a, 8, 7, d, ¢, and consider $ie w* quadries
touching these planes, then the enveloping cones te these guadries,
drawn from any point, £, are all inpolar to z rticular quadric
cone, say %, of vertex E, determined by Phg hdP e plarrissind
the point £. Let the intersections of theXour planes o, 8, v, & he
denoted by 4, B, C, D, the point I} being the intersection (e, B v )
and so on. Then the line ED is the palar line of the plane joining
E to the line (3, ), in regard to the eone ¥: and the line jolning
E to the point (8B, v, €) is the paler line of the plane joining E to
the line (@, 8); that is, the lifte joining E to the peint where 4D
meets e is the polar line of-the plane EBC, in regard to 3. Thus,
considering the conie \\Qg\fe the plane e is met by the cone 2, this
conic, o is that before described, in regard to which the Joining
lines and planes of thefive points 4, B, €, D, E determine a polar
system in the plangé in which o lics.

Regarding gjmyan Absolute conic, the point E is the intersection
of perpendietilars drawn from the points 4, B, C, D, respectively to
the planeg'ay B, v, 8; and each pair of opposite joins of 4, B, C, D,
such asoBC and 4D, are at right angles to one another (cf. Vol. 1,
p-"}’S;,’\EX. 7). In regard to ¢, the relation of the five points 4, B,
@ D, is symmetrieal.

¥z, 4. Five points of a given cubic curve, 4, B, C, D, E, deter-
mine as above a conic, o, in a given arbitrary planc. Consider what
is the aggregate of all such conics when the five points of the cubie
carve have all possible positions thereon. If the curve meet the
plave in the points P, @, &, any such conic, o, must be such that
P, @, R are a self-polar triad in regard to o, as we have seen. The
five quadries through 4, B, C, D, E may be regarded as consisting
of three quadrics containing the curve, together with two degenerate
quadrics each consisting of the plane ABC taken with a plane

N\
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through the line DE. Thus the point F, in which the line DE
meets the plane PR, must be the pole, in regard to o, of the line
in which the plane 4BC wmeets the plane PQR. Conversely, then,
taking any conic, o, in regard to which P, @, R arc a self-polar
triad, we can find five points 4, B, C, D, F of the cubic curve, for
which this is the appropriate conic. Namcly, by taking 4, B, C
arbitrarily upon the curve, then finding the pole, F, of the plane
ABC in regard to o, and then drawing the chord, DE, of the curyes
which passes through F. The aggregate of the conics, o, for all
possible sets of five points of the curve, is thus the same &skhe
agoregate of the conics of the plane PR in regard to which ', §, B
are a self-polar triad. (Cf. also ¥ol. 1, pp. 201, 202.) \

Ex. 5. The proof of Miquel’s thcorem in a plaue, which was
given in Vol. 11, p. 70, was in effect by the polar systen determined
on the Absolute }])ine by the conies through four peihts of the plane.
This proof can be used also for the Miguel theorem for the four
spheres through 4PQ'R', BQR'P’, CRP'Q /BPQR, in the notation
used sboveywibbritldaathecsseinn that, if\O be any further inde-
pendent point, in the space of three ,dltm:ensions, and we consider
the four conics, in any plane @, such’as the conic o in Fx. 1
above, arising, respectively, fromuthe four sets of five points
0A4APQ'R’, ORQR'P’, OCEP'QLUODPQR, then these conics are
lincarly connected. Denote fhese conies by o, o, a3, o5, Thus,
if three quadrics drawn, gespectively, through APQ'R’, BQR'F,
CRP’Q’ have in commoii\a* conic, &, on the plane =, then S, being
outpolar o each Cry Tg T, 18 outpolar to o,; from Lhis the
proof can he comple %

Iz 6. The theprem referred to in Ex. 5 is equivalent to the
following : Lét'@] y, =, ¢ be four lines in a plane, and 4, B, €, D be
four pointyef-the plane, such that the line 4D contains the point
(4, =), theline BC contains the point (, £), and so on, the six joins
of ’chq%u"r peints containing the six intersections, properly chosen,
of the four lines. Further, let P, @, R, P, Q', R’ be arbilrary

' pointsycspective]y on the lines 4D, BD, CD, BC, (4, AB. Then
ke t:rmds P, q, R and x, y, =, being in perspective from D, are

pq]ars of one another in regard to a conic, say o,; similarly, the

t-1‘1a.ds P, @', B and ¥, %, t are polars of one another in regard to &
conic, oy ; and there are two other conies, oy, ¢y, determined sini-
larly. These four conics are linearly connected.

The theory of inversion in a plane. Consider a pal‘ticular
correspondence of two points of space in three dimensions, which is of
importance. Let L be a fixed point, and A a fixed plane. To any
poimt, P, we can then make correspond the point, P, of the linc LP,
Wh_mh is harmonically conjugate to P, with respect to L and the
point of LP which lies on A ; then, conversely, the point corre-
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sponding to P’ is the point P itself. By this correspondence, to the
points of a line, P&, correspond the points of another line, P'Q’,
and these two lines meet on the plane X ; also, to the points of &
plane, PRE, correspond the points of another plane, P'Q'R’, these
two planes mecting in a line of the plane A. Hence, also, as a par-
tienlar result, to the points of & quadric cone, of vertex 0, correspond
the poiuts of another quadric cone, of vertex, say, O, these two
cones having in common the points of a conie in the plane A. The
two cones have then in common, also, the points of another conie ;
the points of this sceond conie must then correspond to one anothen,
In pairs, since the cones have no points in common other than these
of these two conics, and the points of the conic in the plame X
correspond each to itsclf. The plane of the second coni¢ ¢ommon
to the two cones must, therefore, pass through L ; andhénce, the
tangent plancs of the two cones at the points wheres the second
conic meets the plane A, which are points of contatlvof the cones,
must pass through I, as well as through ti:e vgr\tl;ges obeoth conez.
Now suppuse Lhat the plane A is the polary en in regar
toa (':.c.l'tailel quadrie, 2. }')l'hen the pﬂin%?ﬁﬁ%%ﬁ%%ﬁgyp?ﬁgﬁrb
a point, £, lying on the quadric, is the écednd iutersection of LP
with {2; and, to a plane section of £} eorresponds another plane
section, lying on the quadric cone{{oining L to the first section,
the two sections mecting in twglpoints of the polar section, A.
Unless, indecd, the first sectioni$1n a plane passing through L, in
which case the second section teincides with . Let, now, I be a
definite point of the qua;dt'ib‘ﬂ, and = a definite plane, and let us
project the points of (kfxotn U upon =, as before. Then the polar
section, A, of L, projects into a definite circle of =, say [d], with
centre at the projestion of L, as we have scen; two points, P, P/,
of Q, on a line ,tl'ﬁ'ough L, project into two points of &, say [P]
and [P’]; as_éyery plane through the line LPP’ gives a section of
Q which is,éohjugate to the polar section A, the points [P], [P]
lie on an i%nite number of eircles cutting the cirele [A] at right
angles tthus the points [P], [P'] lie on a line through the centre
of (X];and are inverse points in regard to this circle, being harmonic
dinjligates in regard to the points where the line [PP'] meets {1 ]
"This énversion is the same as that defined in Vol. 17, p. 67. A line,
or a circle, of the plane @, is clearly changed by this process
into a cirele, or, in particular, into a line, the cireles inverse to
. one another in regard to [A] being thesc corresponding to two
plane sections of 0 which lic on a quadric cone of vertex L.
if, on O, P and P’ be two points of a line through L, either
generator at P meets onc of the generators at P, the point of
neeting heing the point of contact, of a tangent plane of O
drawn through the line PP', aud, therefore, on the polar section
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A; thus these generators correspond to one another in regard to
L; from this if is easily seen that two circles in the plane =
intersect at the same angle as their inverse circles in regard to [A],
the angle being measured as explained above. Again, any plane
section, g, of ,'its pole M, and the envelopiug cone of 0 along g,
whose vertex is M, are changed by the correspendence in regard to
L, respectively, into a section g/, its pole M', and the enveloping,
cone of {) along u'; thus, in the plane =, any circle and two poiftd
which are inverses to one another in regard to this circlegare
changed, by inversion in regard to [\], iuto a ¢ircle and two poin
inverse to one another in regard thereto, Tt may also he pewarked
that if, instead of L, we take another point, L;, lyingzon the line
UL, and its corresponding polar section, A,, as base/for the corre-
sElxundence, the difference in the plane = is thafJuversion takes
P ace] in regard to another circle, [A]), having the same centre
as [A]. )

K. 1. Taking coordinates in which the'.;b}é.nc = is £=0, the
point of Wj@e@%ﬁﬂ,"@,"é%‘Y.zﬂLi&)g“;y: 0,;.2,\_ 0, with 2=0 for the
tangent plane of Q at this point, the @atferators being 2 & iy =0,
#=1{, the equation of  is of the forin.J* = 0, where

F=aity+ Lz -1— iz + o2 — 2t
Ifa_ then, L be (z,, Yy %os o), th,é'POiDta P, of O, be (£,7, & ), and
P _be (&, o', &'y 77), such phat & = £+ hay, ooy v =7+ 2\, these
satisfying the cquation of\£3, we find
£ 3
A=—2fr+ N + g\@% + E,) +F(nm+ S+ el — St — T2 Fy ™
where F\ is the vafte of F for (ay, 40, %, £,). Thus &, o, &, 7’ are
expressible as hgmtgeneous linear functions of &, #, & 7. Taking
ke .’51(530 — &0 + (79— Gyl a2l K =Fy3"
we easib(éhfﬁpute U/t = Rk and
O

AN ¢ B g ¢
@ 12—y Fon— Ly
\ é;r -—RQ‘ é’ 2

these are the formulae of inversion in the plane =, in which
(& n, §) are the coordinates of a point, and (¥, »', &) those of the
Tuverse point, the eircle, [A], of inversion having the equation
('Téi'n - .1'02.’)9 + @/zo — ynz)s _ knzazus ={.
Ez. 2. We can (Vol. 11, p. 69, Ex. 4) state a relation between
the centres of two circles of the plane = which are inverses of one

another in regard to the cirele [A]. But the relation in the space
of three dimensions is simpler, these centres being the projections,
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from U, of the poles of two plane sections of O which lie on a
quadric cone of vertex L.

Ez. 8. T'wo plane sections of a quadric, having two points in
conrmon, lie on two quadric cones (Vol. 111, p. 10). Projecting these
sections upon a planc from any point of the quadric, and at the
same time the section by the polar plane of the vertex of one of
the containing cones, we see that, if two circles he given in a plane,
therc are two eircles of inversion by means of which one of the
griven circles is changed into the other.

Er. 4. The circle of similitude of two given circles [a], [B], ofA
the plane & (Vol. 11, p. 152), may be considered from the present™2)
point of view., With a peir of plane sections, a, B, of €1, inter-
secting in & line 7, and the pair of tangent planes of Q) throggh the
line £, an axial pencil of pairs of plancs in involution, can hé Jefiticd.
Thercby, to the plane U, joining [ to the point U of.8,"there is
delined a section, ry, passing through Z, the two planesNU, v, being
a pair of the involution. Prove that, if the quadtic be projected
from U, on to a plane =, wherehy the sec\%iu@ &;}guﬂﬁc%}neotjw.
circtes [4], [ @), then the scction y becomes therd cle, conxial with '[%]m
and [8], passing through the centres of simtilitude of these, that is,
the circle of similitude. The centres of suiiilitude are the two in-
tersections of common tangents of [a}pf/3] which lie en the line
joining the centres of these circles. The'cireles are supposed unequal.

Er. 5. If we have four circlesint a planc meeting, in threes, m
four points, there are six circ}éof similitude, one for each pair. It
ean be shewn that these mgel,’\in a point. This follows easily if we
assume (see below, Fx.¢6) that, if 4, B, C, D, U be points of a
quadric, O, then the,guadric, %, desctibed to touch the planes
BCD, CAD, ABD, ARC and to contain the generators of ( at U,
eontains two otheh@enerators of L2, say those at U’. For then, re-
garding (2 and B.as defined by their tangent planes, and considering
the degenerat® tangential quadric which consists of all the planes
through Lhexfbints U and U’, we have three quadrics such that all
the tangt{l)t planes common to any two of them are equally tangent
planes-of the third, these consisting of all the planes through the
gefidentors of @ (and %) at U and U’ The three pairs of tangent
planés of these three quadrics which pass through any line ave,
therefore, three pairs of an axial involution, In particular, taking
AR for the line, the pair of planes ABU, ABU' belong to the in-
volution determined by two pairs, namely the pair 4 BC, ABD, and
the pair which consists of the tangent planes to 0 drawn from 4B,
From this it follows that the sections 0? 2 by the planes 4BC, ABD
project from U, on to any plane, into two circles whose circle of
similitude passes through the projection of U % Thus, by a similar

argument, the sections of Q by the four planes BCD, ..., ABC

Q.
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hecome, projected from U, four cireles whose six cireles of sim ilitude
all pass through the projection of U",

Ez. 6. To prove that the quadric, Z, containing the generators
of a quadric O at a point U of this, and also touching four planes,
a, B, vy, &, whose four points of intersection lie on £, also contains
two other generators of (, say at U’, we use the fact that a quadric
which touches the tangent planes of Q drawn from oue point, P,
also tonches the tangent planes of £ drawn from another point, RS N
If we denote the tangential equation of {2, referred to the planet
o By, &, by D=0,and (£ n, § ) (£, 7, §, 77) be the ,gohl'ﬂi—
nates of P, P’, the equation of the quadric in questipings then
Q — kPP =0, where P=If +my+nt+pr, P'=IE +oafpr'. K
this quadric touch the planes @, 8, v, 8, Its equation niust contain
no terms in 2, w2, 22, p°. Thus, if the coefficients pf\these terms in
Q be 4, B, C, D, the quadric touching 2, 3, yadaaid also the tan-
gent conc of (& drawn from the point (£, ,, %jr), touches alse the
tangent cong.af ‘AW %p ﬁ(ﬁ'g_l’ By€C, D1y, Now,in -
particular, let (g} ;%Lg,tb -?)a e'%ﬁ 0 theu'\\e know, or it is casily
verified, that, as £ contains the fom{intersections of the planes
a, B, v, 8, the point (AE, ..., Ds3) is likewise on 0 (Vol. 1,
p. 55). Thence, the guadric in xﬁiestion, containing the tangent
planes of {1 from a pomt of its€l contains the generators of {1 al
this point; and it is proved that it then contains the generators at
another peint. A

Ex. 7. At the poin;‘(g; 7, & 1) of the quadric

Kz o w4 =0y
let the equation.gf.the tangent plane be written
) A+ py + vz + @i =0,

Using 4, R;}‘, D, respectively, for fow, gwu, hue, fgh, prove that
the pc{la\l\\reciprocal of the quadric, in regard to the quadric

N A7 Bt B i+ O vt - Dtrwl® = 0,

a8 & quadric containing the generating lines of the original both at
(£, m, £, 7) and at (A&7, By, C7, D).

Ez. 8, Prove that the quadrics 23+ hazt=0, ay+kzt=0 are polar
'E'empmcals of one another in regard to any quadric whose cquation
is of the form ar* 4 &y? + hks® + abi* = 0, and that tetrads of points
of the first quadric exist which are self-polar in regard to the last,
two points of the ietrad, which are conjugate in rcgard to the
last quadrie, being arbitrary. Prove, also, that the four points of
such a tctrad, taken with the points to which the coordinates are
refem_ad_, are eight associated points; and that the cubic curve
containing the points of the tetrad and two of the reference points
whose join is a generator, lies on the first quadric. Hence, also,
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if AC, AD he two intersecting generators of a quadric, and P, @, R
be any three points of the quadric, the eubic curves on the quadrie
defined, respectively, by P, @, B, 4, C and by P, @, R, 4, D, have,
as their fifth intersection, & point 8, such that another quadrie can
he constrocted, touching the four planes @RS, ..., PRR, to contain
the gencrators of the original quadric at ' and at D (¢f. Vol.11r,p. 55).

Er. 4. If we employ the cross-ratio of four lines {cf. Vol. 1,
p. 166), it is a fundamental property that, if 4, 8, C, D be four
tixed poinls of & conie, the lines joining these to any point of thé
conic have an invariable cross-ratio, say (4, B; C, D). It can be
shewn that if two circles weet in points 4, B, beside the Ahgolute’

oints I, J, the circle of similitude of these eircles has, for itswalue
of (4, B 1, J), the product of the values belonging to thision the
two circles, From this it can be shewn at once that, if Jthe ‘circles
defined by the triads of coplanar peints (B, Cu B (C, 4, Dy,
(4, B, D), (4, B, C) be denoted, respectively, by 8\, S, 5, then
the circles of similitude of the pairs (8, 8,), (8,850, S}, supposed
undegenerate, meet in a point. And the theo%&f&g}l&é %}Eggld‘;{l%tlbglﬁn

It ean be shewn that the twe tangents drawn, Yo bne circle of a par from
any poink of their cieele of similitude are at the)same svugle as the fangents
from this point to the other cirele. Hence,oftom what is proved above, there
is & polut at which the four circles, drawnlthrongh the triuds of four poinis of
a plane, snbtend equal angles. This rcaﬁ}t was given. by Dr G. . Bennett.

f ¥ be the vertex of one of thestwo quadric cones which contain the
sections of a quadric by two plangs ay 8, whose line of intersection is 7, and
the line joining ¥ to a point, Jyaf'the quadric, meet the guadric again in Ih,
the plane {44 meets the qu;td%ic in & section projecting into the circle of
gitnilitude of the two cil'cKS'\ﬁlt{’) which the seciions o, 8 project, the centre of
projection being {7, .

It B be the vertex éithe other quadrie cone gontaining the sections a, 83,
the planes I, II7 arghitmonic conjugates in regard to the planes /¥, 1W,
_ Ifa conic meet. the joins BC, OA, 4K, of three points 4, B, £, respeetively
P, Py, @ IBRYR L if @R, @R meet in X BP, B'F meet in ¥, and
g, rg’ meak itz : if B be any point of the conie, and the lines g{X L HY,
HZ, meet thedeonic again in X, ¥y, Z;, respectively : then the lines 44,
BY,, sz,m}et in a puint. We can deduce from this that the three circles of
similitudeiof the three pairs of three arbitrary cireles, in a plane, are coaxial.

~Bz)10. For any quadric, given in point coordinates az*4 ... =0,
Y X, 5, &, ), (F, %, ¢, 7) be two points of the quadric, let
$=aff’+... be the polar form, linear and symmetrical in
&2 ¢ 7)and ( £, ¢, ), let A be the discriminantal determi-
nant, and o= $/2A. Tf the tangent planes at (&9, §7), (€59, 057)
tmeet in a line which cuts the quadric in (2, 7, 2, ¢) and (', ¢, 5 ¥,
Prove that (zz' | d)~ (o — £F|A) = (yy/B) (o — n|B) = ete., where
4, B, ... are the minors of the diagonal elements of A.

Ex. 11. Given a quadrie, (3, and five planes, o, 8, v, 9, ¢ let a
quadric be drawn through the four intersections of &, By v, 6 to
contain the section {l¢; this guadric will have with £ another

B.6. v, 2
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Fla.ne section, say ¢, Similarly a quadric can be drawn through the
our intersections of a, 3, 7, ¢ to contain the section Q8+ Lhis quadric
will have with Q another plane section, say 8,. Shew that the
sections §,, g lie on a quadric cone whose vertex is the intersection
of the planes a, 3, .

Projecting on to a plane, we have five given circles, (a), (8) ()
(8), (¢}, and five other circles, (&), ..., (&), such that (8;) aud (&) are
inverses of one another in regard to the civcle which cuts all of (a),
(8), (y) at right angles; and so on. There are ten pairs suchjas
(8)), (&), and each cirele such as (&) is the inverse of all Lhé ‘gther

our with appropriate circles of inversion. \

Relation between Wallace’s theorem for four-circles,
and Moebins’s figure of two inscribed tetrads.) We have
given (Vol. 1, p. T1) the theorem that, if four arbitrary lines be
given in a plane, the four cireles, each defingdNby the intersections
of three of the lines, meet in a point, This\result is ascribed to
Wallace (1806 ; sce Camb, Phil Proc., xxigs1923, p. 348). We have -
also (Vol. 1, ﬁ“ﬁ tgal%énrﬁllg '%E%‘é?em, dué“to Moebius (1828 ; see
Ges. Werke, 1, 1885, p. 443), that ithis, possible for two tetrads of
points in three dimensions to be so-fituated that every point of
either tetrad lies on the plane détermined by three points of the
other tetrad. We give here sotde interesting results of which one
incidental consequence is thevessential identity of the figures arising
in these two theorems. Fhe order in which these results are given
is chosen, however, with 'a further aim.

Let P, P,, P,, B,(bé any four points in a plane; through each
of the six joins of these four points let an arbitrary plane be drawn,
the plane throGgh the join of P; and P; being denoted by 5.
Lvery threg ‘of these planes, by their intersection, determine a
point. Leb\ihe point of intersection of the planes, aw, on, %
drawn through the joins of the three points P, Py, P;, be denoted
by P\}\ “There arise four such points, P/, P;, P;/, P,. We prove

. . . - 4
that\these lie in a plane. This is, in fact, only a restatement of

:.%Iéébius"s theorem, as may be seen by comparison with p. 61 of

ol. 1, where a diagram is given: denote the points P, P, Py, Py

 respectively, by 4, B, C and D’; let the point of interscction of

the arbitrary planes drawn through BC, C4, 4B be denoted by D,
the point of interseetion of the planes drawn through BC, BD', €I
be denoted by 4, and similarly for B’ and €’ ; consider then the
line of intersection of the planes ABC, 4'B’C’, denoting the points
where this line is met, respectively, by BC, 4D", €4, BD’, 4B, CD",
by P, P’, Q, Q, R, R’; then, the points B', ' are both on the
plane which was drawn through 4D’ so that B’C’ meets 4D’, and,
h(}mce,B’C " passes through P’ in the same way, C'4’ passes through
@', and 4’B’ passes through B'; as P, P; @, @; R, R’ arc the
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points of intersection of a line with the pairs of opposite joins of
the four points 4, B, C, D', these three pairs of points are in in-
volufion ; whence it follows (Pappus’ theorem being assumed) that
the three lines P4', @B’, RC’ meet in a point, say D,; the point
D, of the theorem, lies on the plane BCA’, for both 4’ and D are on
the same arbitrary plane drawn through the line BC'; thus we infer
that D, is the same as D ; this, however, shews that the four points
A, B, ', D are in one plane; this is what was to be prnveg.

The dual of the preceding theorem is as follows : Frow the peint
3, let there be drawn, in space of three dimensions, four arbitrary
planes, a;, &, &, & upon the line of intersection of any two( of)
these planes, say of o, and oy, let there be taken an arbitrary golnt,
which, for the case of these two planes, may be denotedby: P,.
The three points so taken upon the lines of intersection of any
three of the oviginal planes determine a new plane ; fobexample,
the points Py, Py, P, determine a plane which wéJudy denote by
g, There are four such planes; the theorem is that these meet in
a point, say 0. 'The figure contains eight pei et bratie 1n
and eight planes, a,, ..., Q, togs -y G5 0f AheSe, four plane pfss
through every point, and four points lie #hevery plane, Moreover,
the points are a system of associafed points’(Vol. mr, p. 154), heing
the intersections of three linearly independent quadrics; for in-
stance, the plane o contains O, £33 Py, Py, and the plane g,
containg Py, Py, Py, O'; thus.dhe plane-pair {(a,, oy,) 1s such a
quadric, apd two others, indgpendent of this, are formed by the
plane-paivs (o, o5,), (¢, @, The dual theorem, that the eight
planes of two Moebius &strads touch three independent quadric
envelopes, is alsa easﬂ;%eriﬁcd. (Cf. Vol. uz, p. 148, Ex, 14.)

Now suppose thatlye bave four lines in a plane, and also two
points, 7, J, in thiplane. We may consider the four conics, all
passing thronglX-and J, each determined as also passing through
the threc intersections of three of the lines. The Wallace theorem
is that theje*four conics have another common point. Take ar
arbitrayg\point, O, outside the piane, and describe a non-degenerate
quadyigeontaining O and the two lines 0, OJ. Consider the four
plaiesjoining O to the four lines of the plane; say, these are
4 NFy, @3, 2,1 let the line of intersection of o, and a, meet the
quadric, beside O, in the point Py; and so on; the p_lane, Oyz3 5
containing the points Py, Py, Py, will meet the quadric in a cone
which projects from O, on to the plane, into one of the four conies
of the Wallace theorem. The point, O', in which the four planes
such as ay, intersect, will lie on this quadric, by the property of
eight associated points. The Wallace theorem thus fpllows. ) )

The theorem that the four planes ooy, ..., s meet in a point, &7,
18 capable of a suggestive ana}iytical proof, as follows : Denote the

2—2

Q
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equations of the four planes «, ..., a,, dr;um through O, respec.
tively by #,=0, 2,=0, 2, =0, 2,=0; these will be connected by a
linear identity, say, az,+ bz, + cv,+ dr,=0. Lot ,“:U be the.
equation of any chosen plane not passing through 0. "The cquation -
of any one of the four planes ey, ..., 0z may be expressed in terms
of ¢ and any three of 2, x,, 25, 2. We may then suppose the
equations of these four planes to be, respectively,

Epots -+ gty + by, — a2 =0, N

..............................

komy 4 kpaey +loyar, —dE =0, .\' N,
where a; does not appear in the first equation, ..., and {z.-;dr__)es not
appear in the last. Then the point Py, for examplty lying on
7=0, 7;=0, lies on oy, and on ey thus it satisties both the
equations ko, —at =0, koo —di=0, as well"ds the identity
aw, + da,=0. Thence we infer that by, + ky; = O gencral, then, o
the same way, we have &y + &y =0, and, with these identities, ’Fhe
four planegaredidequitbelyyoivginby the égtations. The condition
that these four planes meet in a point(s then given, if we add to
the four equations the identity ax, + 5.2+ d, = 0, by the vauishing
of a determinant of five rows and.@slimns, in which the elements of
the first row are 0, by, ki, i, %8, and so on, and the elements of
the fifth row are a, b, ¢, d, @ As this determinant is skew sym-
metrical, and of odd order,it Yauishes identically. See, below, p. 61;
and, for another proof of Wallace's theorem, see p. 64.

Ez. 1. Moebius’s théorem, above identified with a fignre from
which Wallace’s_tHeorem follows, can be stated thus (ef. Vol 1,
p- 61): If a line(theet the joins of three points, 4', B, ', respec-
tively, in Py, @K', and the joins of these to three other points
A, B, C, namely the lines P’4, @B, R’C, meet in a point, D', then
the intersections of the line with the joins of 4, B, C, say the
points\%Q, R, when joined to 4, B', C", will give three lincs P4
QB \BC", which also meet in a point, D.

) ‘\'The dual result is that if the joins of a point, O, to three
sapoints 4, B, €', meet the joins BC, C4, AB, of three points

‘A, B, C, in three points which are in line, then the joins of O to
A4, 8, C meet B'CY, C'4', 4'B’, respectively, in three points also 1
line. Tt may easily be found that O lies on a certain cubic curve,
whose equation thus appears as capable of two forms.

Ez. 2. We may similarly, in three dimensions, consider the loeus
of a point whose joins to four given points meet four given planes
in points lying on a plane. This locus is a quartic surface,
considered by Bauer (Sitzber. dayer. 4k., Minchen, xvi, 1588,
p- 837). When the four given planes determine a tetrad of points
in perspective with the four given points, the locus is the Hlessian
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of a cubic surface. (Cf. Vol. 11, p. 223.) In general, the reciprocity
which holds for the case of Ex. 1 does not hold in three dimensions.
If the four given points are in one plane, and are the poles of the
four given planes in regard to a conic iu this plane, then, with this
conic as Absohite conic, the locus is that of a point such that the
perpendiculars from it to the given planes have their feet on a
E]:me; this locus is a cubic surface with four double peints (see
clow, p. 25).
£, 3. The rcader may compare the result of Ex. 1 with the
theorem given by Stciner (Ges. Werke, 1, p. 157): If the perpefi-)
dicvlars drawn from three points, 4', B’, (", to the joins, BC£CA,
AB, of three other points, mect in a point, so do the perpendicitlars
drawn from 4, B, C to the joins B'C’, C'4’, A'B’, of the firstithrec
points. This will be found to be true in the more genéral form :
Given two triads of points, 4, B, €', and 4, B, '€ ¥nd also an
arbitrary conic; if 4’, B, ¢’ be in perspective\with the triad
formed by the poles of BC, C4, AB, taken n r%}%’rd to this conie
then 4, B, C are in perspective with the pw@ “E“‘: 24, e
And generalisation 1s possible to two teftads of points in three
dimensions, QO
Additions to Wallace’s theoremiin a plane. Wallace's
theorem has additiens (Vol. 1, p. #2), ascribed to Steiner (1828,
of. Ges. Werke, 1, p. 197), to the effett that the feet of the perpen-
dicalars, drawn from the Wallace point to the four lines, lie in line,
and that the centres of the £four circles which meet in the Wallaece
point, lie on a circle containing the Wallace point. We proceed
now to obtain these reslts hy projection from the figure in three
dimensions. Let O, 3B, C be four points of a quadric; let P he
any poiut of the seGion of the quadric by the plane ABC'; and let
I, J be the point€in which the generators of the quadric at O meet
the gcnel‘&tora‘g;t P. Thus the planes OPI, OPJ are the tangent
plancs of th%zqqﬁadric drawn from the line OP, and OP is the polar
line of IX “Next, let U, ¥, W be the poles, lying in the tangent
plane_af)@, respectively of the planes OBC, OC4, O4B. . We can
provgs that the six points O, 1,0, U, 7V, W arc on a conic. Fer, if
O, OJ meet the scetion of the quadric by the plane 4BC in I', J,
the fact that this section contains the six points P, I', J', 4, B, C
involves (Vol. 11, p. 29) that the planes joining O to the six lines
'y, Pr, »r, BC, C4, AB tounch a guadric cone; and the poles
of these planes, respectively, are the points 0, I, J, U, ¥V, W. Con-
.versely, if conies be taken, in the tangent plane at O, through the
four points O, U, ¥, W, and one of these meet the generators at O
in the points Z, J, the second tangent plane of the quadric, drawn
from the line 1.7, touches the quadric in a point, P, of the scetion by
the plane ABC. When we project the figure on to a plane, from the
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point- P, the three sections OBC, 0C4, OAB become civcles, the
projections of I, J being the Absolute points, their centres being
the projections of U, ¥, W ; and we have the result that, if three
circles m a plane have a common point, their three other intersee-
tions being in line, then their centres determine a circle passing
through their common point. When we project the figure from the
point O, the section of the quadric by the plane OUP becomes a
line, through the projection of P, which is at right aungles to th
line into which the conjugate section OBC projects, the Absolabe
points being again the projections of I and J. Let I be the(peint
in which the sections OBC, OUP mect, other than 01 alsodet 07 be
the point which, on the conic OZJUFW, is the harmonit~of O in
regard to I and J; it can be shewn that the line QI ics oi the
polar plane of 0'. T'o prove this it is sufficient t6$hew that the
polar line of OH, which lies in the tangent plane@t'0, and contains
the pole, U, of the plane OBC, passes through®’. For this, con-
sider the pole of the plane OUP. This pol¢\s the intersection of
the polar pletiey PO EPPLYINA'R, it lié\i’i" the tangent planc at
0, in the plane OBC, and in the tangeft plane at P it is thus the
intersection of the tangent line, at Ojof the section OLC, with the
line L7 ; the tangent line, at @, of the scction OBC, is however
harmonie to OU in regard to OFAOJ. Thus the pole of the plane
OUP is the point, of IJ, wherethis is met by the line, from U, which
is }}armonic te U0 in regard To U1 and 17J. This line contains 0":
+ as it contains U, it is the.polar line of OH. Now the point 0’1
determined by 0, 1, J(ahd the conic OIJUVW alone. 'Thus, as we
have proved that the polar plane of O’ contains the line (OBC,
OUP), it follows that this plane also contains the lines (0C4, OV F)
and (OAB, QWPY; in other words the points, other than O, in
which the sechions OBC, OC4, OAR are respectively met by the
planes OPT; OPV, OPW, lie in a plane through O. Whercfore,
projecting from O, on to a plane, we have the result that if the
pegpgn}ilcu]ars be drawn to the joins of three points (the projections
O.f\%it_; B, O), from any point (the projection of ) on the circle con-
Ve taming these points, then the feet of these perpendiculars arc on &

line (Vol. 1, p. T1). From this result, and the result obtained i
regard to the centres of three circles which meet in a point, the
additions to Wallace’s theorem are obtained at once.

e, 1. I, with any two points, I, J, as Absolute poinis, the
perpendiculars be drawn to the joins of three points, 4, B, C, of 2
p.la,ne, from any point, P, the feet of these determine in general a
circle, the pedal circle of P (Vol. 11, p. 87). We have proved (Vol. Uy
p- 88) that, if P move on a line passing through the centre of the
cn'cle_ “fhlch contains 4, B, C, the pedal circles have a common point
(Bobillier, Gergonne's Ann., x1x, 1828, p- 856 ; Fontend, Nouw. Anmn,
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de Math., v, 1905, p. 504; v1, 1906, p. 55). This point will then he
the intersection of the pedal lines of the two points of intersection
of the circle 4, B, € with the linc on which P moves, It can be
shewn that these pedal lines are at right angles, and that their
point of interscetion is on the nine points circle of 4, B, €. More
cnerally, if P move on an arbitrary fixed line, there is a circle to

which all the pedal circles are at right angles; this remark the
writer owes to Mr J. H. Grace. It will now be shewn further that
this remains triue when P moves on a certain cubic curve, which in
particular may degenerate into the aggregate of a line and a conid),

Let 0, 4, B, C be fixed points of a quadrie, the poles ofithe
plancs OBC, OCA, OARB, lying in the tangent plane at O, \being
deuoted by U, ¥V, W. Let P be any other point of the {uadric.
Let the plane OPU meet the section OBC in H, beside O smilarty
let OK, OL, where K, L are on the quadric, be the lineg {OPV, 0CA)
and (0PI, O4B). When we project from O, on{d.% planc, and
take for Absolute points, I, J, the points of the.plane lying on the
generators of the quadric at @, the pedal cifefé;4hr#efiwires optgein
projections of 4, B, C, of the point whichy&(the projection of P, is
the circle obtained as the projection of the section HKL of the
quadric. To prove that the pedal circlesyfor certain positions of P,
cut a fixed cirele at right angles, wevprove that the corresponding
planes HKL pass through a ﬁxedptjint of space; when this point
1s on the quadric the pedal circles"mect in a point.

1’)‘;@ can suppose the cquatigh.of the quadric, referred to 0,4,8,C, -
to be ) .
Fyz + @iy hoy +E{@+y+2)=0,
where { =0 is the p]an:c'ABC', and & =0 the plane OBC, ete. The
point 77 then has udofdinates (— 7, w, v, fit), where 2u =g+ h —f;
Ru=}+f—g Rw=f+g—h If the point P, on the quadric, be
(& n, & ), G point H, where the line (OBC, OUP) -meets the
quadric, bg&hid 0, is then found to bhe

OE + fir, 0F + 8, — (wE+ /i) QE+ D E+n+ 07T
}"’ithfsﬁnilar coordinates for K and L ; from these the plane HKL
is found, expressed without 7, to be
PEX +am¥ + 2Z +t(E+q+ O (Fnl+gtE+hEn) =0,
where
X = (uy + g0) (ul + ), ¥ = (ot +kE) (€450
%= (wk +fn) (on + %)

It will be shewn that when P moves on a section of the quadric by
a fized plane containing O and the pole of the plane A%?C, th.e
plane HEL passes through a definite point of the gquadric; this
leads to the theorem above referred to, given in Vol. 11, p. 88. More
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\ ,,I\ne.ntioned in Vol, os1, p. 293, Defining the perpendicular from a
) point to a plane by means of an Absolute conie, e, namely as the
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generally, regarding @, ¥, 2, {, in the shove equation of the plane
HEL, s fixed, and regarding (£, 1, {) as variable, these being taken
as proportional to the coordinates of the projection of P, the
equation will represent a locus for P such that the corresponding
pedal circles cut a fixed circle at right angles; the Absolate points
are given by

St gtE+ hEn =0, E+n+E=0.

Tt can be shewn, in particular, that if 4, m, n be arbitrary; aud
@, Y % t be given, with ¢ = vw + wu +wo, by ww=mn —1, vy =l 1,
wz=bn—1F and : N
Wl lw gt = g (man + wlv T+ Tmwe?) : O

—u(m—ny-vn—IF—wd=wnp

then the cubic relation connecting £, n, { is satishied either by
I +mn +nt=0 or by IfE +mgni+nht™ = O Wore particalarly,
if :rni, 7 he ;uch that Ific + mov + nhw = O%he values for @, ¥, % g,
namely; w1 {m + a), vm (nD), wtn (Ipd and — (pn+nl+in),
correspond, #0"a’ '%ﬁ%xaﬁ’ '7%”5%‘; gl;igm%e duadric, and (the equation
IE+mn+nf=0 corresponds to a Iindfhrough the centre of the
éircle ABC ; we then have the resylbef Vol. 11, p. 88,

Ew. 2. If four planes, o, 8, v, 03 be drawn through a poini, 0, of
a quadrie, the lines of interseetion (8, v), (v, a), (&, £) (o, 8), (B
(ry, 8) meeting the quadric again, respectively, in 4, 83, C, A/, B,
we have proved that the planes ABC, AB'CY, BC'A’, C4'B’ meet in
a point, 0, and inferrédthat O is on the quadric by remarking
that Q, 4, B, C, 4,85, C’, O are a set of associated points. This
follows from what'is'said above, p- 21 for let the poles of o, 3, 75
be, respectively,' ¥, ¥, W, 1'; let the conie through 0, U, V, W, T
meet the geferators at O again in 7 and J. Then the second
tangent plgge to the quadric from IJ has its point of contact on
every ong(of the planes ARBC, AB'C’, BC'A', CA'B’.

Ep 8/ We may consider the generalisation to three dimensions
of tlﬁ pedal properties above given for a ‘plane. A particular
resnlt, leading to a cubic surface with four double points, has beent

&),
c,

line, from this point, to the pole of the plane in regard to this
conic, w, the condition that the feet of the perpendiculars, drawn
from a Foipt E, to the planes containing four points A4, B, C, D,
should lie in & plane, is the same as that ihe quadric which touches
these plancs, and has the cone Ew as enveloping cone, should
touch the plane of w. "Ta prove this, consider first, instead of the
conic ©, a quadric, 3, the perpendicular from E to a planc being
the join of E to the pole of this plane in regard to 2. Let the
poles of the planes BCD, ..., ABC be denoted, respectively, by
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A, ... D, and let the lines EA’, ..., ED’ meet these planes,
respectively, on a plane @, whose pole is £. Let the polar pﬁme of
E be ¢, and denote the planes BCD, ..., ABC by a, ..., 8, respec-
tively. The line E4’ then intersects the line (=, «), which is the
polar line, in regard to {3, of the line PA'; in other words, the
lines EA’, PA’ ave conjugate. So, likewise, are the pairs (EB’, PB’),
(EC’, PC), (£D, PD’). 'The locus of a point whose joins to E and

P are conjugate lines in regard to the quadric £ is, however, that{

guadrie, through the plane sections of £} by the polar planes e, @,
which contains both I and P, as is easy to see. This description.of
the guadric Iocus is, however, redundant, since any quadric, threugh
the section of @ by the polar plane ¢, which contzins alsg'the pole
E, will meet © in another conic and contain the pole ofithe plane
of this. Thus the condition for E, in relation to 4, B,€, D, is that
the quadric, which contains &', B, €, IV, and- #lsd the conic in
which £} is met by the polar plane, ¢, of E, should* also contain E.
Or, the condition may be stated in {lual ﬁqa%{vrefﬁ%léggbtg%t _1(;)}11_6
planes e, = meet cach of @, 8,4, 8 in a.pair of Imes whi are
conjugate in regard to £2, and reciprdegting in regard to O, by

saying that the quadric which touchesva, B, ry, 8, and has, for en-

veloping cone, that drawn from E%6 0, should touch.the polar
plane, e, of E. When {} consigts of the planes containing the
tangent lines of a conic, w, thetpolar plane of E becomes the plane
of w, and the condition is-as stated above; namely, the quadric
touching a, 3, v, & and theé tangent planes of the cone Ew, touches
the plane of w. This quiadric has then, also, as generating lines, the
two tangent lines of g&\'hich pass through the point of contact of
the quadric with this plane,

Ex 4. If thelperpendiculars, in regard to an Absolute conie w,
drawn from spoiht E to the four planes containing points 4, B, C, D,
meef theseplaties in points which lie on a plane, then each of the
five points™d, B, C, D, E is in the same relation to the other four.
qu let's “he the conie, in the plane of @, in regard to which the
Joining*lines and planes of the points 4, B, C, D, E determine a
polar system, Then, as we have scen (above, p. 11), the enveloping
cone from E to any quadric touching the four planes BCD, ..., ABC,
and touching also the plane of @, meets this plane in a conic which
18 Inpolar to o, "Thus, from Ex, 8 preceding, when the perpendicn-
Jars, in regard to @, drawn from E to the four planes BCD, ..., ABC,
meet these {n points of a plane, the conic o is inpolar to o, and
tonversely. As o is given, and o Is symmetrical in regard to
4, B, C,'D, E, the property in question is likewise symmetrical.

. Ex.5. For the theorem of the symmetry of the points 4, B,C,D, E
m Ex. 4 see W, Mantel, Wiskundige 4pgaven, 1899-1902, p. 396,
No. 199, Sec also II. W. Richmond, Camb. Phil. Proc., Vol. xx,

.n
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- Part 1, 1924. In this paper Mr Richmond proves, for the rational
curve of order » in space of n dimcensions, in extension of the
Wallace theorem for a circle in a plane, a result which, for the
cubie curve in threc dimensions, may be stated : "The necessary and
sufficient condition that a cubic curve should be such that, in regard
to an Absolute conic w, the perpendiculars from any point of the
curve to the four planes containing any other four points of the
curve, should have their fect on a plane, is that the conic o shdild
touch the three chords of the curve which lie in its plane. Let™Mhe
three points of the curve which lic in this plane be £, @,d8lct ¢
be the conic, of the plane PQR, in regard to which he"joiuing
points and planes of five points, 4, B, C, D, E, of thedurve, form a
self-polar system. We have shewn above (p. 12) thabvtlic only con-
dition for ¢ is that P, @, R should form a self-polartriad in regard
thereto; also (Bx. 4, preceding) that the condition for 4, B, C,D. B
is that & should be inpolar to o. A conie, @yinpolar to all conics,
o, for which f{aﬁgw%tﬁpa'mimﬁe}fapglﬁr gt is given by any eonic
which touches PQ, QR, EP ; and, conve}\sély, enly by such a conic.
This proves the result, ANV |

Ez. 6. Prove that, if Q be_any quadrie, the neccssary and
sufficient condition that the lities Joining a point B to the poles,
4, B, C’, D', respectively, of the planes BCD, CAD, ABD, A#C,in
regard to {2, should mect tiiese planes, respectively, in points lying
on a plane, is that thelines D’E, D'E, should be conjugate in
regard to €2, where Ejs the definite point such that the envcloping
cones .from K an .@uto £2 are also enveloping cones of a quadric
touching the four‘planes BCD, ..., 4BC. 1t can be shewn (cf.
Fix. 11 above) that, if D, be defined from D, and the four planes
containing M@, C, K, just as E, is here defined, then the linc D,E,
contains B% Hence the condition for E in regard to 4, B, C, D, 15
that .tl.;w{ine D,D'E, should intersect the polar line of D'E. The
condition that the lines Joining D to the poles of the_plancs BCE,
C‘{{’Ea ABE, 4BC, in regard to (), should meet these planes in

Awoints of a plane, is that the line D, D’E, should intersect the polar

™\ine of D'D. One eondition does not, involve the other, in general ;

" this will be so, however, when the paints D', D, E arc in line. Tt will
also be so when Q reduces to a conie,

Fx. 7. The results may bhe obtained analytically. As before, 1ot
4,8, C, D, E be any five. points, and E, be determined from E by
the condition that the quadric which touches the planes BCD, ...,
ABC, and the tangent cone from E to the given quadric {2, has E,
as the' vertex of the further common enveloping cone of the two
quadr;cs, while D, is determined from D and 0 gimilarly, by a
quadmc. touching the four planes joining 4, B, €, E and the
enveloping cone to £ drawn from D let coordinates be taken with
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respect to 4, B, C and a further arbitrary point ; and the tangential |
equation of {} be (4,8,C,D,F,G,H, UV , W{lmmn pP=0. Then
prove that the line I, E, contains the pole, DY, of the plane 4BC,

and meets the plane 4BC in the point whose eoordinates are

Arr = U{E" + E'ry+ DEE' BT’T'— Vgt +4'7)+ Dyy
g‘r; . EFT 3 ?}T’ —_ 'I}'!T 3
Crr' — W'+ &Y+ D&y
; f L) 0’
é‘T - ; T N
_ where (£, 9, & 1), (£, %, &, 7)arc the coordinates of D a{idj'E,
respectively. Tn order that the perpendiculars from E, in régard to
Q, drawn to the planes BCD, ..., ABC, should meet these' in the
points of a plane, we have to express that the liwesNVYE, D'E,
should be conjugate in regard to O ; that is thaf.the“polar plane
of I should contain the point in which IVE, meetsvthe plane ABC.
If the point. equation of {1 be (, 4, ¢, d,ﬁtg:{: by u,'; wlia,y, 5,1P=0,
this condition is that E should lie on theifuartisrsunfsesrFhogein
equation, with @, g, =, ¢ as current cooxdinates, is
Art— U (&t + 72) + Dga b
-t p
4 Crt— W (Et +oag) + D=
' Ut w5k

When coordinates are refe'\fred to 4,B,C, D, 50 that E=0,3=0,
=0, this equation is \i“t

(ax + }13/“‘4‘:8'5 +ut)+ ...

(gr+ ... +w)=0.

At_‘Uf ) —W.

T x E(M+:Tl:y:+érz+u.t)+...+g--z z(g.:c:—{—.."+wt)=0,
or ',’\ $ ’
ﬁ@i@ﬂ-gﬁ\?ffﬁ)Jr_“JrC(.aw+;..+w_t)+;_)(fw+t...+dt)__ﬂxo’

F

wfi}erg ’-.5\18 the discriminantal determinant of the point equation
o N\

_ 100 e a conic, Iying in the plane Az + gy + vz + @t =0, so that
Nthere are four equations such as An + Hu +Gr+ Um=0, ’Eh? pot
equation of £ is (Aw + ... + wt)*= 0. The equation then divides by
+...4+wt=0. The remaining cubic surface is given by
ME — ) [ArE— U (B + ) + Dézl+ ... +i=0
or, referred to 4, B, C, D, by
Aot Buy 4 Cyzt + Dot =0,
and is a cubic surface with four double points. The equation ex-
Presses that the point E;, derived from E as In the preceding
Example, is on the plane of the Absolute conic. :
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Ez. 8. In regard to the Absolute conic given hy
A A py e+ wt=0, Adx*4 By + CP+ D =0,

the four points of reference for the coordinates are such that their
opposite joins are at right angles; and they have an orthocentre,
the intersection of the four perpendiculars from the points to the
opposite planes, which is (A&7, B, »C, wD™). )

Ex. 9. The quadrics touching =0, y=0, z=0, {=0 fn®
regard to which the point (& 5, &, ) is the pole of the (plane
A + py + vz + ot =0, give, in this plane, @ ® conics. The (uadrics
of the form A4a*+ By + Cz* + D#* = 0, which pass through £&in, &7y
give, in this plane, other oo conics. Prove that everygtonic of the
latter system is outpolar to every conic of the formet s¥stenm.

Egz. 10. The surface o™ +5 + 2+ ¢ 1=0zs\the locus of a
point from which the perpendiculars to x=8)gr=0,z=0,t=0
have their feet on a plane, when a proper copicis taken as Absolute
conic. Prove t}ﬁt}fﬁbw&bwma%ggtimw\’;% w? in an avhitrary
plane, Ax + py +vz+ wt =0, namely thé “Sintterscctions of this plane
with quadrics touching =0, y =0, =0, =0 which are such that
the pole of this plane, in regard towthe quadrie, is

(B, =)

Ex, 11, Tt should be remtarked in connexion with preeceding
theorems for a cubic curg®, that, if three tetrads of points of the
cubic be taken, say, B, C, D; 4, B, C", D' ; 4", B, C", D",
then the twelve platies, of which each contains threc points of one
tetrad, are all tehched by a quadrie. Further, taking any twe
other arbitrary(points of the curve, the two tangent planes of the
quadric, throu'g}l the chord joining these two points, determine two
further poigts of the curve, and hence a tetrad, of which the two
other conmecting planes also touch the quadrie.

Lef “the planes BCD, ..., ABC be denoted, respectively, by
%, 49,'«,,_8, with a similar notation for the planes of the two other
oodels. Since , 8, v, 8,2/, B, o, 8’ arc planes of a cubic developable

E’Vol. 1, p. 189} the quadrics touching the first seven of these also
touch &'; these quadrics, expressed tangentially, are <02, and such
a quadric exists touching alse the planes joining D to the chords
A"B”, 4”C". The cnveloping cone from D to this quadric thep
touches the five planes a, 3, v, PA"B”, DA”'C”. But thc lines
DA, DB, DC,DA4"”, DB”, DC” lie on a quadric cone (of vertex D,
containing the curve). Hence the quadric cone touching the five
planes ¢, 8, v, DA"B", DA”"C" also touches the plane DB"C".
V}’hetefore, the quadric constructed, touching the planes &, B, v 0
¢’y B ', & and DA"B”, DA”C”, equally touches the plane
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DB'C"”. As touching &', B, ', & and DB"C", DC" 4", DA”B",
this quadric also touches the eighth plane, A”B”C", or &”.

"This proves the theorem for the ease when D" coineides with D,
In general, lel 3 be the quadric touching @, 8, v, 8, &', 8', o', &'
and the two planes.8”, ", or 4”D"”C", 4”D'B"’; if the tangent
plancs to X from D.A" meet the cubic again in B,, G, it follows
from the particolar case that I touches ull four planes containing
threes of D, A", B,, C,. Butthen,as = touches these four planes and: N\
o, 8, v, 8, it follows again, as in the particular case, using 4" DL
as DA’ was used, that X touches all the four planes 8%, 4", a” 8%/

Kz 12, If the coordinates of a point of the eubic curye) be
written (€%, €2, 6, 1), and the points 4, B, C, D be given by
a + @t + ...+ a,=0, or say =0, the points 4’, B’, G, \D " heing
given by ¢ =0, where ¢ = 4,6+ 0,0 + ete,, and the‘points 47,

B”, C", D" by 4 =0, where v = ¢,f* + ¢,0° + ete. =0, shew that the
planes of every tetrad of points of the cubic, giyem by an equation
of the form £f'+9¢ + &y =0, touch the qumjmlm%'m
equation is N\

oy G1, @p, f3, aa‘t:(’}.

bOJ By b, b"b' ','E':i-"
€, iy fas g a1

LM, o, NP 0

0, 4 miSm, pl

Theorems for the circumscribed circles when an in-
definite number of lines,is given in a plane. .Recurring now
to the thcorem in which fotr arbitrary points were taken in 2 plane,
and arbitrary planes were drawn through the joins of each two, we
were able, with theytse of Pappus’ theorem, to shew that the four
points, obtained s intersections of the planes through the joins. of
each triad of gawits, lie in a plane (above, p. 18). If we start with
five arbitrary points, it can be shewn that the five planes, each
ohtained 3§1)0w'e from four of thesc, all meet in a point; and for
the proof, of this the Propositions of Incidence only are sufficient.
If wehegin with six points, the six points so obtainable, one from
efich Fve of these, lie in a plane, And so on, indefinitely.

In a plane, a, let five points Py, Py ...y P, be arbitrarily taken;
and through the join of every two let an arbitrary plane be drawn,
for instance the plane a;; through the join P, P;. The plancs oy, a5y ths
determine g point, P, and so on. The four points P, Py Py
Py liein a plane; this is what was proved above (p. 18). W}}ED
we start with five points there arise five such planes. Denotlnlg
thes‘? bY Gy vy g, We THOW prove that these five planes meet in
a point,

In the plane @y, are five points, namely Py, Py, Pry Pragy Prns
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and the process followed gives another plane than ey, passing
through the line joining any two of these points. Of these five
points consider, at first, only the four P,, P, Py, P, au_d apply
to these the process which was followed when we starled with four
points, P, P,, P;, P,, lying in a plane a. Through the lines joining
the respective six pairs, of the four points,

(Pmd.a Pms)a (Pma' Pms)a (P‘ma P:m)s (Pls lr’12:1), (1,19 P124)9 (PH Pm)\
there pass, beside the plane a,,, the plancs

N
. . 2\, A
Crogse  Czass  Ohays  Pige Opay ®553

i\

of these, however, the planes day.s, oy, o meet in P ;5 the planes
trssgs Ohgy Oy Meet in Pugs and apy, ai, o, meet in P>\ Thus, the
plane oy, which is the plane of the points P, Pyid;,, contains
the point of intersection of the planes ay,,. a,gg,-;;}ﬁ.m. If we next
consider the four points Py, Py, Puy,y Py, wesititilarly prove that
the same poipt,of dtrrmaatien diegion the [Qane . Lhat is, the
five planes, ¢, , ., Where p, g, r, 8 are eyeey four of the numbers
1,2,8,4, 5, meet in a point. This igwhat we desired to prove
The final point may be denoted by Py,

If we now begin with six points,¥; ..., P,, of the original plane,
every five of these, by the same process, will give rise to a point.
It can be shewn that the six poifits so obtained lie in a plane. The
process gives rise, with others;*o the four points Py, £u0, Prass Py
all lying in the plane a,,¢Beside this plane there pass, through the
six joins of pairs of the:slchaoints, namely

(P1245P125)) (PES} 1?1})9\ (Pum Pm}s (Pm: Pms): (lea Przs); (Pmﬁ! Pﬂ“)’
respectively thesplanes '
A\ ¥
y \'..'al‘ma Prsey  Mignas  Opggs  Ohows  Haossy

which, fgF htevity, we may denote, momentarily, by (45), (53), (34}
(36.)?‘&@, (56), respectively. By what we have shewn, the points
of intersection of threes of these planes, which are

O (45,58,84), (45,46,56), (58,56,56), (34, 36, 46),

lie in one %lane. These points are, however, respectively, P
Prossos Progsy Progss. By a similar argument it follows that every four
of the six points in question, whose symbols have two digits m
common, are in one plane. From this, the fact that all six points
are in one plane is clear.

If we start with seven points, P, ..., P,, in the original plane,
there will be seven planes, of which one arises, as in the case con-
sidered, from every six of these points, It can be shewn that these
seven planes meet in a point. The proof may begin by considermg
the five coplanar points P, where r = 3, 4, ..., . And so o
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We may consider the dual of these theorems, obtained by taking
planes all passing through a point, and an arbitrary point on the
line of infersection of any two of these planes. The ease when four
planes are drawn through the point was considered above. In
particular, the points which are taken on the lines of intersection
of the pairs of plancs, may be the further intersections of these
lines with a quadric drawn through the original point. When the

number of plaues originally faken is even, the theorem leads finally »

to a point; it ean he shewn, as in the case of four planes, that this
point is also on the quadric. When we begin by considering, five
planes through the orviginal point, we obtain, by projectionson t6
a planc, the part of the theorem proved above (p. 1) whith is
cxpressed by saying that the focl of the five parabolas, which touch
five Tines in fours, lic on a circle. When we begin hy{considering
§1X Iplanes through the original point, the result\ds)that the six
circles, obtained from every five parabolas, have a point in common.

And so on. These theorems were given by Ghiffoxtb (38T Y vh adfy i

Papers (1882), p. 38, whose method of proqfa(in dual statement) is
by a curve of ovder n with a fixed (n — 1)fold point.
£z 1. Another representation of the.preceding resulis may be
referred to. On a quadric surface, anjigenerator of one system may
be associated with a value of a parameter, say 6, and any point of
the surface with the values of apair of parameters, say 8 and ¢.
Now take two fixed lines of spact, say @ and g, both meeting a line
h; and associate the points{ot the line # with the values of &, the
pomt (A, ) corresponditfgto 6=0, say, and two other assigned
points .of' & corres pondii}g\to assigned values of #; similarly, associate
the points of the lingdy with the values of ¢, Next, take a further
line p, .meeting‘ & ®Brt not 2 uor #. 'Then any transversal of the
three lines , WP as meeting 2 and y in points, say # and &,
curresponds.tq & definite point (4, ¢) of the original quadric: and
the aggrc_'%gg of all such transversals, which mect 2 and y in related
Tanges, corresponds to the points of a plane section of the original
Q‘{ad,lgc ; upon this plane section there is a point, say H, independent
f’_f's’fh'-*]me P> which corresponds to the transversal & Conversely,
any’ plane section of the quadric passing through the point H,
corresponds to such an aggregate of transversals of the fixed lines
f??! and another line p, meeting % but not @ nor y, wherein however
b Ef_(lllne £ 1s not, unique. I'wo such plane sections, a, and o, have,
f;;’; 'I;ehH’ another common point, say FP,; this corresponds to the
at two such reguli of lines meeting @ and y, both coutaining
s ha\fe m common another line. If three such sections of the
qllfld!‘lc. be taken through H, and the three further intersections of
pairs 9i these be P,,, P, Py, the points of the plane section of the
quadric, which contains these points Py, Py, P, have parameters

n
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6, ¢ connected by an equation, lincar in both these ; the points of
this plane section thus correspond to a regulus of lines meeting
# and g, in points forming two rclated ranges: this regulus does
not contain 2, but contains three lines corresponding, respectively,
to Py, Py, P;,. The correspondence may be pursued when more
than three sections of the quadric are taken through f£. In particolar
we have the following result: Let & be a given transversul of two
given non-intersecting lines,  and . Conxider five regruli of Lhnes,
each consisting of lines meeting x and y in related ranges, ‘each
regulus having % as one line. Two of these reguli haveatimon a
line beside %, say ¢i;; the lines g5, gu, s, common ta the pairs of
three of the regull, determine a further regulus of digs meeting @
and Yy BAY (o, not (-‘Ontﬁillillg A; the four l'Cguliq s Faias Gaoes thas
so arising from four of the original reguli,\ha¥e then o line in
COMMION, S8Y (s ; and the five Jines, qruy, SNWFouss 11l belong to s
regujus of lines meeting & and y. N

From thisvresuldbradihsagy ergdon Q\:\an arbitrary plane, we
obtain the figure considered abov {p. 31), in which we have
considered the civcles through the intersections of the triads selected
from five arbitrary lines of a planessthere is the sli ght generalisation,
however, unless the plane of sedtion be taken to contuin the line b, -
that here, iustead of five linési'in a plane, we obtain five cireles with
& common point. S

Ez. 2 Let S be thé\conic drawn to touch five given lines of &
plane; let S, ..., S¢hé conics each touching four of these lines;
suppose the six ‘eonics are all triangularly inseribed to another
conic. Prove that s, ..., 8, have a common tangent line (Wakeford,
Proc. Lond. MMath. Soc., xv, 1916, p. 340, who uses the result to
establish t]\ng stheorem of a double six of lines).

8K Ti?)N II. THEOREMS OF THREE AND FOUR DIMENSIONS

Tetrahedral complex as determined by planes meeting
tiiree lines in four dimensions. We have considered in Vol. I
(p- 99) the system of lines which are normals of the quadrics of a

ese constitute a tetrahedral complex this 1
an aggregate (00 %) of lines, in space of three dimensions, determined
by the single condition that the range of points, on every one ©

the 1ine's of the complex, in which the line meets four given fixed
planes, 1s related to a given range of four points. Or, what is the
same thing (Vol. 1, P- 30),

by the condition that the planes, joining
every one of the lines of the complex to the four points of inter-
section of the four given planes, form an axial pencil of four planes
which is related to the same given range of four points.

We assume the elementary properties of space of four dimensions
(cf. Vol. 1, pp. 85, 87, etc.); that a general line meets a threefold
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space in a point; that a general plane mcets a threefold space
in a linc; that two general planes have a point in eommon; and
two general threefold spaces have a plane in common; that twe
non-intersecting lines determine a threcfold space; that three nen-
intersccting lines have a common transversal line, which meets each
of the three lines in the point in which this meets the threefold
space determined by the other two. We also assume that through
a plane, @, there pass «0* threefold spaces which meet any two lines
in related ranges of points. When the two lines lic in a plane, say

a, if P, P’ be the points in which these lines meet one of the threc,

folds through @, the line PP’ mects o7, and lies 1in &, and s¢ passes
through the point common to = and a; the ranges determined’ on
the two lines by the threefolds are thus in perspective. Erom this
it is easy to deducc the general statement. O

Now suppose that, in the fourfold space, we haveNthree non-
intersecting lines, and also a (flat) threcfold space, $ijiot containing
any of the lines, not their transversal. Asthe Qﬂi@xﬂbﬁ%mﬂﬂdﬂ!‘ﬁ ;
points, one on each of the lines, there is d cfmined a planc, an
there arca0? such plancs. We prove thald the lines, in which the
threefold Q is met by these planes, constitute a tetrahedral com-
plex in £. And, converscly, we shew that any tetrahedral complex
in 3 ecan be determined in such a way.’

n

Let, the Tines be , &, ¢; let thé\points in which they mect Q be

4, B, C, these being supposed potto lie in line. Then the common
transversal of a, b, ¢ does natie in 2 ; let this transversal meet {2
in D. Also let this transyersal meet @, b, ¢ In A, B, €. Cor}sider
a planc, =, not lying &}, mecting a, b, ¢, in F, @, B, respectively.
The threefold space{™wd, containing « and 4, as eontaining P,
contains the line @and hence also the point A’. Thus the four
threefolds =4, &B, wC, wD meet the transversal line of @, &, ¢,
respeetively, id £he points 4", B',C’, D; these points are independent
of the plagew! Next, let 2 be the line in which the plane = mects 0
the threefold space w4 then meets £ in the plane i4; and any line
of € nigets the plane 24 in the point in which this line meets the
thwﬁﬁld wA. Thus the plancs {4, IB, IC, ID are met by any line
o, in the range in which this line meets the threcfold spaces =4,
@B, wC, »D; and this range is therefore related to the fixed range
A, B, ", D, by what we have seen, Wherefore, the lines 7, in
which 0 is met by the planes w, constitute a tetrahedral complex,
relative to 4, B, C, I, .

Conversely, given in (3} any tetrahedral complex relative to four
points, 4, B, C, D, of ), we can draw, in a fourfold space contaiung
Q, an arhiteary line through D, not lying in Q: we can then take
on this line three points, 4', B', €', In such & way that the range
4, B', ¢’, D is related to the range determined, on any line of £,
3

I, G. IV,
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by the planes joining 4, B, C, D to a linc of the complex. ‘Then
the tetrahedral compriex is that constituted by the lines of © which
lie in planes meeting the three lines 4.4°, BE’, CC’, of the fourfold
space,
Paﬂr. Let the fourfold space be referred to the five points
A, B,C, D ard €', and, in {erms of the symhols of D and €', let
the symbols of A" and B’ be, respectively, given by 4’ = D+,
B =D+)2C'. A plane, w, weeting the lines 44°, BR', GOLN
contains three points with symbols, respectively, \ "
A+pD+CY), B+gD+2C)H, CH+sC, K\
%o that a general point of this plane has a symbol A
fAd+pD+CY+9[B+q(D+1C)]+ L(GhaC);

in particular, the points of this plane which~Jic”in the space
gia B, C, D]) are such that £p +ggn + & =0wuch pointscl then

ve symbols rE(A4 +pD] +7n[B +gD] —(E™ non) C, and are
those oyf th’é“’l‘ﬁlgg ?Hfﬁlg'fﬂéf?ﬁ%‘l;ﬁoing: ]Sgﬂ )

(4 +pD)—pC, 7 (BERD) ~grC,

‘The coordinates of these points, relative to 4, B, C, D, are
(ry 0, —- p, rp) and (0, r, — gr, rgiiddnd the line joining them has
the coordinates (— Tqy YD, gp.4gPA, P, q), v); denoting these by
{4 ..., '), they satisfy M fymm =0. This is the equation for the
tetrahedral comples. It niay be readily verified that the pl.t;nes
juining any line of it 4o\d, B, C, D meet an arbitrary line in a
range related to 4, B’,\C’, D. _

Analogous g exélsation of alinear complex. In the preceding
section it was assuimed that the common transversal of the three
lines a, &, ¢ was ot in the space £2. We now shew that, if this
b w0, the ].,ufuu’ral planes meeting a, &, ¢ mect £ in the lines of 2
linear complex. The definition of a linear complex has been given
in Yolswily'pp. 56 ff,, and it has been shewn that this can be stated
*ilhﬁut the use of the algebraic symbols (Vol. 11, p. 64): suppose
ﬁa!.fhn?'v, in the space of three dimensions, two planes, intersccting
L3R dine TU . and, in one of the planes, a flat peneil of lines of

ooAertex T, and in the other plane a flat pencil of Jines of vertex Us

/ thee peneils being related to one another, and the rav 7T, of the

one, correspending to the ray UT of the other. Then the aggregate
of the lines joining a point, of one ray of one pencil, to any point
of the corresponding ray of the other pencil, is n linear complexs
nidd, conversely, any linear complex can be so determined.

let . t, u three non-intersecting lines of a fourfuld space;:
Iet & be the conmon transversal line of these, meeting them,
rapectively, in €, T, U. Iet @ be a threefold space containing
the line &, but not the lines ¢, £ 4 Take fixed points, E, I, G,
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arbitrarily upon ¢, ¢, %, and let EF, which does not lie in {2, because
cand ¢ do uot, meet ) in 4 ; similarly let EG meet {1 in B. Thus
AB is a particular fixed line of {} Iying in a plance which meets the
lines ¢, #, 2, and we may regard ) as determined by the line k and
the points 4, B. If now L be any point of the line ¢, the line LF,
lying in the plane CEFA4, will meet the fixed line C4, say in P;
and the line LG, lving in the plane CEGB, will meet the fixed line
CB, say in @ and as L varies on the line ¢, the ranges (P), (@), m
C4 and OB, will be related. In particular, when L 1s at €, hoth P
and @ are also at C. Thus, the pencil T (P), in the plane kd, i<,

N\
Ny

N,
5

related to the pehdil I (), in the plane kB; and these pt-n.rils have
the ray TU i) ?(ir:}mn(m.( If now JIE be any point _of the line 4 the
line LM, whicl lies in the plane TLF, meets the line TP, say in X
and as 3\0,‘;4, P are in Q, so is X ; again if N be any point of the
line wdthe line LN, which lies in the plane ULG, mee‘ta the I’m.e
UQ.sav'in V; aud as U, C, B, Q arc in (3, s0 is ¥, Thus XV i
JAline’of (1, in which this is met by a Plane LMN which moets 'Un:
€ #iven lines r, 2, u; and X, ¥ are, respectively, upon the corres mlu:s
rays TP, [/Q, of the two related pencils spoken of. Thus, as L, M,
vary. the live XY describes & linear complex in £, of which 48
and PQ are particular lines. .
Er. Let the fourfold space be referred to the five points
4, B, T, U, E, the space £} being referred to the firat four of thee,
We may then, without loss of generality, suppose mbuls of
C, F,G,in terms of those of the fundamental points, to be wTy U,
F=A+E G=B+E. If then the symbol of L be written C +E,
-1
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:.E\ny-line drawn through
/ can be drawn through O which meet the quadric in two coincident
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or T + U + zE, the ﬁ)oint P, lving on LE and €4, has the symbol
P=T+U-~az4, and the point @, lying on LG and CB, has the
symbol Q=T+ U —aB. Whenee, if the symbols of M and N be
written, respectively, M =4 + E+ T, N =B+ £+ »U, the point
X, lying on LM and T'P, has the symbol X =T (1 — a4+ U —2d;
and the point ¥, lying on LN and U, has the synbol

' Y=U{l-ax)+T 28 A
That is, the coordinates of X and Y relatively to 4, B, T,.U ‘are,
respectively, (~@, 0, 1 — 2y, 1) and (U, —a, 1, 1 — 2z Fydw'these

we at once find that the line XY belongs to the linefryomplex
expressed by m +m’=0. A\

The determination of the fetrahedral complex, and of h Tinear complex,
h‘y ﬁ»lanes mecting t}_lreg lines in space of four dimensions, Wre given by Segre,
“Alcune considerazioni elementari,” ete.,” Rend. (ife3at. Fuivrme, 11, 1888,
p. 45, Another way of regarding these complexes\a}'iseg helow, in Section 2

9\
Spheres as determined from sections of a quadric in four-
fold spage., Wig-ddsersegotBdp cirglésdn a plane may bhe regarded
as projections of plane sections of\a’quadric in threefold space, the
centre of projection being on th&quadric. The Absolute points of
the plane, through which thelgircles pass, ave on the generators of
the guadric at the centre oftprojection.

Spheves in a threefold\space, II, may similarly be obtained by
projection of sections,of & quadric in fourfold space. Such a quadric,
0O, may be define Q’\aré as the Jocus of points (oo ? in multiplicity)
whose comdinatgs, in the fourfold space, satisfy a general homo-
geneous quadrdtie equation. let 2 =0, y=0, 2= 0, £ =0 represent
tour threefoldswhich intersect in u point. O, of the quadric O, and
v={ beanother threefold. The equation of 3 will then have a
form_ o\¢

L@+ by eF o+ AP + Ufyx + Qg + hay + Lpat + 2yt

N + 2zt + 2{Adx + By + Cz+ Di) v =0.

O will meet £ in one point at O. Lines

points at O; fhese, it is easily proved, lie in and generate 4 three-
fold space ; for the given equation of { this is given by

dx+ By + Cx+ Dt = 0;

it is called the dangent threefold of Q at 0. If P be any point, other
than O common to  and its tangent threefold at O, the line OF
maust lie entirely on {2, because it meets 0 in two coincident points
at O and in a further point P, while a line not lying on £ meets
this only in two points. Thus the common poiﬁts of O and its
tangent threefold at O are the points of an aggregate of lines
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through 0. Now, an arbitrary threefold meets {2 in & quadric surface,
lying in this threefold ; an arbitrary plane, which may be regarded
as the intersection of two threefolds, meets £} in & conic; and, if
any line, in the tangent threcfold at O, but not passing through O,
meet: the quadric @ in P and @, the conic, in which the plane OPQ
meets (2, eonsists of the two lines OP, 0. Thus, the intersection
of £ with the tangent threefold at O consists of a quadric cone, of
vertex O, lving in this fhreefold, the @ ! generators of this cone
being the interscctions of € with the tangent threcfold, constituting,
all the Tines of (@ which pass through 0. With the equation taken)
for (O, this cone is the intersection of the threefold giveh )by
Az + By + Cz 4 Dt = 0, with the locus represented by 3

(2, b, ¢, 4, fr @ B ps @, 702 7, 35 1) = O( &

This last consists of an oo ? of lines, joining O to the’ poiuts of a
quadric sirfuce lyiug in the threefold z =0 \ _

I we project the points of O from 0, on to gi@bitrary threefold,
Il. the quadric cone of oo lines of ¥IY-pedblr IiNegos R &1 il
evidently give rise to a conic, ¢, in II, lying’in the planc in which
I is met by the tangent threefold of \Q7at 0. Now consider an
arbitrary threcfold, 5, not passing tiirough @ this meets £} in a
quadric surface; and it is interséeted by cvery line of £2 which
passes thvough 0. ‘The section of ) by X will thus project, from O,
into a quadric surface in the£hwveefold IT, with the property that it
passes throggh 1he conic {""s\ Or, if we regard o as the Absolutc
conic of the threefold Q@cc T, the sections of £}, by all threefold
spaces not passing through O, project into spheres in IL. -~

The tangent plans'ef such a sphere, at any point, is the projection
of the tangent plang-of the quadric section of £ at the corresponding
point, say P, ofi{’; this tangent plane at P is the intersection of
the tangent (fhreefold of Q, at P, with the threefold, =, whosc
section of/6Ms under consideration, But, in particular, if we con-
sider thetangent planc of the sphere, in the space II, at a point of
th‘% ¢onie o, the corresponding point, P, of £, lies on the tangent
Wirdefsld of © at O, and the tangent threefold of O at P then
passes through @, This tangent threefold of Q at P contains also
the pole point, say .S, of the threefold ¥, in regard to {2, and thus
contains the line 0. The point in which O8 meets the threefold pA
thus lies on the tangent plane at P of the quadrie section (Q, %).
Wherefore, the tangent planes of the sphere, in the space II, at all
pomnts of the conic ¢, pass through the point in which the line 08,
Trom O to the pole of the cutting threefold 3, meets the space II.
In other words, the centrc of the sphere is the projection. of the
pole of the euttin g threefold 3, in regard to 2. In this description,
we have assumed that the notion of a polar point, and polar three-

Q.
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fold, in regard to the quadric £, is clear, from the analogy of the
cases in two and three dimensions, without detailed explanation
the equation of the polar threefold of a point (&', 7/, 2, ¥, v') is
formed from the equation of © by the operator Z20fte+ ... +v'0jouy
and if the polar threefold of a point P contain a point @, the polar
threefold of @ contains P,

Consider two points of £, say O and @3 the tangent threefolds
of {) at these points will meet in a plane, and this plane will mieet
{} in a conic. Every line, lying on {2, which passes throngh(6), will
therefore meet this conic, and will intersect a particnlapdine;Aying
on £}, of those passing through @, at a point of thix conje™Through
this point, which is on (1, there pass o * lines, lying 410, to peints
such as @, Thus every line of £} mcets o ? othors atiel there arc o3
lines lying upon Q. 'When the points O and @*&ve such that each
lies on the tangent threefold of O at the other*the plane common
to these two tangent threefolds passes thrqugh both O and €, and
contains the line 0Q. This line, meetingZ¥in two coincident points
both at 0, dfdalinseniivaly oo Q. ean be shewn that, in this
case, the planc conimon fo the two tangent threefolds mcets O only
in this line, 0Q, taken twice over,upt touches the cones, of lines of
{2, drawn from O and @, along this line. Further, a tangent plane
of the cone of lines of 0, thtough O, is characterised by the fact
that every threefold which “ventains this plane is a tangent three-
fold of Q. A '

Ez. 1. Given the ,s:f;:c}:quations

. :Z‘E+9&+zs+tg,+\s}=0, 3’02+-..+Z-’2‘_—03 n?”la"r...-i-f»':g_'-o’
Zotr Y Yol + sk B0, =0, a4 ... + vy =0, ax+...+ve=0,
deduce that O™\

A
({20 ~902) + 7 (2~ 202) + 2 (a2, Yo— 2 y:)]F=0.
Ea @y If the equation of () he written, as above,

a3

N bz, y, x, t)+2v(A.r+Bg;+Cz+Dt)=0,

{ "the cone of lines of 0 from (0,0,0,0,1) s given by ¢ (2,7, z, =0,

Ax + -+ DE=0. If (2, o/, %, ¢') be such that 4o’ + ..+ Dt' =0,
and ¢’ denote ¢ (@5, &, £), this cone is touched by the plane given
by dz+ ...+ Df =0 and 0P 02 + ... + L3¢ fot’ = 0,

£z. 3, Tt follows from what js said that a spherc may be
represented by the threefold whose section with Q) projects into the
sphere. "The sphere may, therefore, equally be represented by the
point which is the pole of this threefold in regard to Q. A circle
in the space II, through which an infinite aggregate of spheres can
be drawn, may thug be represented, in the fourfold space, by a plane,
through which an infinite aggregate of threefolds can be drawn; or
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the cirele can equally be represented hy the linc of the fourfold
space which is the pole, in regard to £, of the plane; this being the
locus of the poles, in regard to £, of the threcfolds drawn through
the plane, as we easily verify., A couscquence of this representation
will be that two lines of the fourfold space which have a point in
common, heing the polars in regard to Q of two plancs which lie
in the sume threefold space, will represent two eireles of the three-
fold spacc which lie on the same sphere, that is, two circles which
have two points in common. In particular, from the theorem that
three lines in fourfold space have a common transversal, if no twe
of the lincs meet, we infer that three cireles in threefold spacé, of
which no two lie on a sphere, arc all met in two points by a properly
chosen circle. (Darboux, Compt. Rend., xeir, 1881, p. 44794 °

Exr. 4. Asan excreise in regard to the derivation of a Sphere from
a threefold scetion of a quadric in four dimensiong,are may prove
that two spheres cut everywhere at the same angie.’ By this we
understand that the four plancs, passing throughythe tangent line
of the circle of intersection of the twa.spheibsaatibrarpeinti®, of
this circle, which consist of the two tangent'planes of the spheres
at P, together with the two tangent plaie¥ of the Absolute conic
drawn from this tangent linc, form an axial peneil which is related
to that similarly arising for any otherpoint of this circle of inter-
section. We shall assume that iffenr threefolds, in space of four
dimensions, have a common pland, and an arbitrary threefold be
taken, to mect this plane iné\ine, and each of the four threefolds
in a plane, then the axial pencil of four planes so obtained is related
to that obtained similarly*hy ancther arbitrary threcfold ; in fact,
a line cau be drawn (.iri\nany ways) meeting the four threefolds in
points lying on thefeur planes of the axial pencil.

Consider two gudric sections of 2, by two threcfolds, = and 3';
let & be the plfne common to these threefolds, and P a point of the
conic in w%h‘this plane meets 0 ; let T be the tangent threefold
of {} at Ppand 7 the line in which T' meets the plane w. The range
of threefolds which can be drawn through = meets 7' in a range, or
axialypenicil, of planes, all passing through I; of these threefolds =
afd \=are two, and these meet 7 in the tangent plancs at P of the
quadric scetions of O by = and 2'. There are also, however, through
@, as through any other planc, two threefolds which touch . By
what is said ahove, these meet the tangent threefold T in planes
which touch the cone of lines, from P, lying on {2, Thus thege
planes touch the conic in which the cone of lines of {2 from P is
met by the cone of lines of 2 drawn from any other point, O, of (2.
These planes thus project from O, on to any threefold II, into planes
touching the Absolute conic of the space TI. These planes are,
however, by definition, the intersections of the tangent threefold T,
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at P, with the two tangent threefolds drawn to O from the plane
=, and these two threefolds are independent of the position of P
upon the conic in the plane =,

Thus it appears that the two spheres obtained by projection from
€ of the two sections (2%, (1Y, have the same angle of intersection
at all their common points. This angle is a right angle when 3, %
are conjugate in regard to (1. '

As many detailed applications of the geometry of space of four
dimensions occur in subsequent pages of this Volime, we content
ourselves here with these indications,

7 '\ A

SECTION III. USE OF SPACE OF FIVE DIMENSIONS

The representation of the lines of space ofithree dimen-
sions by points in space of five dimensiong/ A hinc, in space
of three dimensions, depends on fawr pammeten‘%' 1l may be given,
for example, by the two points in which it mealstwo speciil ed planes,
though this would fail if the line were injgng of the two planes. It
appears {hat, Hig-@nbraepusgibation \'\}iiCl docs not fal for any
line is that adopted by Cayley * {see g¥o¥e, Vol. 11, p. 56), whercin a
line is represented by the ratios of six*coordinates, I, m, n, ¥, 2, %,
connected by an equation X' fwwwi +nn’ =0. If, then, these six
coordinates are taken to be thelcoordinates of a point in space of
five dimensions, the lines of: the original threcfold space are repre-
sented by the points of & guadric fourfold Iving n the fivefold
space. In the represeiftation, considered above, in Section I, of
the points of a pland by the points of a quadric surfacc in three
dimensions, thereare two points of the plane to which there
correspond all ghe points of two lines of the quadric surface;
the represent@tion (Vol. 111, p. 189) of the points of a plane upoen
a cubie suffdee, there are, similarly, six points of the plane each
correspot}(h‘ng to a linc on the cubic surface. It is remarkable that
ta sgebwsingular elements oceur in the correspondence between the
line8,0f space of three dimensions, and the points of the fourfold
‘Qﬂiidl'i(: in space of five dimensions; to every element in either figure -
~worresponds a definite element in the other, Moreover, the guadric
 fourfold is quite general; for, as in preceding cases (Vol. m, p. 15),

any general quadratic relation in six homogencously entering varl-
ables is reducible o the form w4 v*+ w*— a2 — 2~ 22 =0, and,
by putting l=u+a, '=u—a2, m=0v+y, mM=v—y n=0+3
' = w -, Tthis is of the form '+ mm’ +un' =0,

. 'Through any point of such a quadric fourfold, (I, therc pass
oc* lines which meet Q in two points coinciding at this point:
these lines, therefore, have no otber point of intersection with &,

* Cf., also, Klein, Ges, Math. 4bk., 1, pp. 107 £
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unless they lie entirely thercon. These lines generate a tangent -
fourfold of Q at this point. If N, ..., X, ... be current coordinates, -

the cquation of this tangent fourfold is found by acting upon
the equation of £} with an operator A3/l ...+ X3/ + ....
There arc, however, w? Jines, through any peint of £, which lie
entirely on £). The points of ‘these lines constitute the aggregate

of the points common to Q and the tangent fourfold at the point.’

considered. ‘These lines meet any (flut) fourfold space in the points
of a quadric surface, which lies in the threefold space in which this
fourfold is met by the tangent fourfold at the point considered,(\f
onc point of  lie in the tangent fourfold at another point of, 0,
this latler lies in the tangent fourfold at the former; twowsuch
points of {2 may he spoken of as conjugate to one another;“they are
such that the line joining them lies entirely on . Mdrd generally,
to any point of the fivefold space there corresponds a fourfold,
giveu by operating on the equation of £ by A0/88 %0+ V8/3l' + ...,
where (7, ..., 7, ...} are the coordinates of the pointyand (A, ..., 7, ...)
are cuirent coordinates. This is called BobutiBouriobd g the
point. Thus to any line of the fivefold, space there corresponds a
polar thregfold, which is common to the{pelar fourfolds of all points
of the line, o\

When the equaltion of ) is Z'P¥mm’ + nn’ =0, the condition
that two points of £, (, m, .. )N\, g, ...), should be conjugate is
M+ 11+, =0. This 1s lhe ¢ondition that the two corresponding
lines of the original threefold space should intersect onc another.
The coordinates of any Rtﬁht of the linc joining the two conjugate
points are of the fonn\s}&r’i + X, o+ g, ... )y for a proper value of o3
such points evidently répresent the lines of the original threefold
space which lic jivfhe plane of the two intersecting lines, and pass
. through their piirt of intersection ; they describe a line lying on (2.
The aggregatensf all the lines of the threefold space, which mect
& given lige {Z m, ...), is represented by the points of & lying on
the tﬂﬂg@§ fourfold at the point (4, m,...}.

Consigder the lines of a linear complex in the original space,
satighyihe an equation @l + ... +a&l+...=0 (cf. Vol. 1, p. 61).
These ave represented by the points of £ lying on the fourfold
represented by this linear equation; these points constitute a
threefold quadric in this fourfold space. The lines, of a linear
¢ongruence, common 1o two linear complexes, are then represented
by the points of £} Iying on a threefold given by two such equations,
say al' + ...+ al+4 ...=0and 47 + ...+ A7+ .. =0; these points
constitute g quadric surface Iying in this threefold space. This
Space is the intersection of the polar fourfolds of two points
(o, b, ..), (4, B, ...); it is equally given by the intersection of the
tangent fourfolds of Q at the two points where £ is met by the

Q.
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line joining these two points. Thus, the lines of a linear congruence,
in the original space, consist of the lines which meet two properly
chosen lines of this space. Incidentally we thus again reach the
correspondence, ahove referred to (p. 31), between the points of a
quadric surface, and the lines meeting two arbitrary skew lines. In
particular, the lines of a lincar complex, {a, b, ...), of the original
space, which meet an arbitrary line, (7, m, ...}, where '+ ' 4 un'=0,
are represented by the points of {3 lying on the threefold intersection
of the tangent fom‘folt{)of Q, at the point (4, m, ...), with the polix
fourfold of the point (4, &, ...): this threefold liex equally an the
tangent fourfold of Q at the point, other than (4, m, ...), mavhich
03 is met by the join of the two points (¢, m, ...}, (¢, 8, ) Thus,
all the lines of a linear complex, (a, b, ...}, which meet & arbitrary
line (I, m, ...); equally meet another hine, say (X, pom. '['bis other
line js that known as the polar line of the first Givregard to the
focal system associated with the linear complexXYol. ul, pp- 61,
64); its coovdinates are of the forms I —pd, - pb, ..., where .
p 15 such that these satisfy the equation/bf™ (2, namely such that
(I — pa) (b dpraylBEQ YR p = (@l a4 .. )i(ed + BY -+ o).
In the space of five dimensions, the edudition for the two points of
(1, that cotrespond to a pair of poiar lines in regard to a linear
comglex of the original space, i$'that the line joining these pornts
should pass through the polesin regard to Q, of the fourfold which
defines the linear complex ;™or, that the tangent fourfolds of £ at
these two points should.@iteet on this fourfold.

Ezx. 1, Consider tyq\lincar complexes (¢, &, ...}, {d, B, ...)s for
which the linear ifiattant ad’ +a'd + ... is zero. In the space of
five dimensions, t%r correspond to two fourfolds of which each
contains the poleof the other, in regard to {23 so that, in place of
being spokeh‘of as apolar, they may be spoken of as conjugate.
A line f}com“the pele of one of these fourfolds, to a point of .Q
\\=hic}\]:ig’s’0n the other fourfold, evidently meets {2 again i a point
also@u'this other fourfold. Thus, in the oviginal space, the polar
line, n regard to one of the complexes, of a line belonging to the

. (@ther, is equally a line of the other {cf. Vol. ur, p. 65).

y 7 Ex. 2. Prove that every two of the six linear complexes expressed
by i40'=0,1-I'=0, m+m'=0, m—m' =0, n+n'=0, n—n'=0
are conjugate. Also, that the poles of an arbitrary planc, in the
original threefold space, in regard to the six focal systems determined
by these, lie on a conic; and, that the six polar planes of an arbitrary
point, in these focal systems, touch a quadric cone. :

Ez. 3. If, instead of the coordinates I, m, ..., we use coordinatess
Ty Y % Uy U, W, such that I=w+iu, V=2~ i, m=y +iv,m =Y -,
n=2z+iw, n' =z — fw, the equation of O takes the form

Py + it rar=0.
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Two lincar complexes may then be represented by
av+by +es+futgo+hio=0 and de+ ...+ Mw=0,

With these forms the condition that these com plexes should be
conjugate is casily found to be aa’+ 86 + ...+ 5k = 0. Suppose
now we have six linear complexes, X, =0, ..., X, =0, where
Xr=a,x+by+...+hw, of which every two are conjugate, so that
@bty + ..o+ fh, =05 without loss of generality we can suppose that
also a2 +b2+...+h2=1, (r=1,...,6). From these twenty-one
conditions there can be inferred (see helow) the twenty-onc cohd,
ditions a; by + @b, + ...+ 2sbe =0, ..., okt gzk'x + . 4 gl 0;
al+at+. . talt=1,.. b2+ k.. .+ h2t=1. Hence the equation
of £ can equally be written X2+ X +... + X2=0. _Thys the
property enunciated in Ex. 2 holds for any six linear cémplexes of
which cvery two are conjugate. O

Lo shew thal the second form of the conditioni\dltows from the
first, consider the matrix, M, of six rows and cqbu;]ns, in which the

r-th row consists of the elements a,,,\bmw,dgéauhgﬁé@g@ﬂgfm the
transposed matrix, obtained from M byNnteérchanging rows and
columas, the first form of the conditions\i¥ expressed by MM <1
{cf. Vol. 1, p. 67, and Vol. i1, p. 71). This, however, gives M =M1,
and hence M3 =1. This expressesghesecond form of the conditions.

Consider, now, the lnes comdron. to three linear complexes of
the original threefold space. /These are represented, in the fivefold
space, by the points of Q lying on the planc which is common to
the three fourfolds wh'c}{‘a,éprcsent these linear complexes in the
fivefold space. "This pmc meets {} in the points of a conic. If
b L), (B iy S (s, My, L), be three peints of this conie,
any other pointsaf’the conic has coordinates (nd + oy + o5k,
Q1M + 3o + galig, ...), provided oy, g, 6y are subject to the
quadratic condition which expresses that this point lies on Q. In
the original\spiace the corresponding lines are, in general, those of
one system of generators of a quadric surface (cf. Vol. 11, pp. 58,
60; Exxu4, 9). To any plane of the fivefold space there corresponds
apother plane; for the polar fourfolds, in regard to £, of an three
Poigts of the plane intersect in another plane, through which there
Passes the polar fourfold of every point of the original plane: the
polar fourfold of any point of the second plane equally contains
the first plane; the planes may be spoken of as polars of one
another. "I'hus, to a conic determined on Q by its intersection with
a plane, there corresponds another conic also on £, _of which every
ppint is conj ugate to every point of the formt_er conic; so that the
line joining an y point of one conic to any point of the other conic
lies entirely on £}, The points of these two conics correspond, in
the original threefold space, to the two systems of generators of a
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quadric surface. - The two lines, of either of these systems of
generators, which ineet an arbitrary line of the threcfold space,
correspord to the two points of Q, on one of these conics, which
lie on the tangent fourfold of £ at the point correspunding to the
arbitrary line,

If we take four linear complexes, they will have two lines in
common, in general; these correspond, in the fivefold space, to the
two points in which £ is met by the line common %o the fourfolds
representing the complexes. In particular, the two transversals of
four skew lines of the threefold space require the cousideratioh, of
the line common to four tangent fourfolds of 1. ANy

If we take threc lines in the original space of whichievery two
intersect, say (L, %, ...y (L, Mgy o)y (B Mg, -..), the(oordinates
(o + ool + aaly, oy 4 oy -+ aymy, ,..) are those Gta line what-
ever oy, &y, o3 may be. Thus, in the fivefold spac(-:‘,:if' three points
of £ be taken of which every two arc conjugatehe plane: containing
these points lies entively upon £3. Two lines AN IR NP % ek,
of the thregfpld spasesiBrhichoiptamsect, g’\fe Tise to ¢ ! other lines,
with coordinates of the forms (I + abyigh + om., ...), which pass
through the point of intersection and Jie in the common plane of
the lines: these correspond to the'points of Q2 Iying on the line
joining the points (4, my, ...), (Bt ...). There ave, now, in the
threefold space, two systems of lines, each «c * in aggregate, all of
which intersect both the gixerilines; namely, first, the lines through
the point of intersectionef* the two given lines, and, sccond, the
lines in the common plane of the two given lines. If (L, my, ...} be
aline of the first systém, not lying in the plane of the twe given
lines, all lines of the first system have coordinates of the forms
(Pili+ pady + pylis?5 ) and, if (Ag, g5, ...) be a linc of the second
systern, that i§, aline in the plane of the two given lines, not passing
through thei} point of intersection, all lines of the secoud system
have cpb(d?nates of the forms (672 + 0,4, + o3y, ...). To thesc two
S)_’st?ms\uf lines there evidently correspond, in the space of five
dugen‘sions, two planes lying entircly on 0, both passmg through

) »h\hg, line of {2 which joins the two given conjugate points, (&, 7. .- b
and (L, m,, ...). Considering the matter more generally, in the
fivefold space, let x, y, 5,1, £, v denote coordinates therein, of which
t=_ 0 represents the tangent fourfold of © at the point (0,0, 0,0,0,1),
1_1.’1'ng on {}, and =0 represents the tangent fourfold of  at the
point (0,0,0,0,1,0), also lying on £, the joining line of these two
points being, therefore, z =0, y=0,2=0, 4 =0. These points are
supposcd not to be conjugate. The equation of © will then be of
j:he form fv — ¢ =0, where ¢ is a homogeneous quadratic polynomiﬂ-]
in 2, , = u. As ¢ =0 is satisficd by an «? of values of the form
|2’ = yly' = z/z" =ufu’, this equation, ¢ = 0, represents an aggregate
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of & # planes, all passing through the line # =0, =0,z =0, u=0.
The intersection of £ with the tangent fourfold £ =0 consists of
the oo ® lines in which this fourfold meets these planes. The points
common to & and the tangent fourfolds £=0, v =0, consist of the
x? points of a quadric swrface, lying in the threefold given by
¢=0, v=0; this surface is the interscction of 3 with the polar
threefold of the line # =0, y =0, 2=10, «=0. Now suppose we
take coordinates so that the points (0,0,0,0,0,1)and (0,0,0,0,1,0),
lying on 1, are conjugate to one another, The equation of 1 then
takes a form £ 4 T — 4 =0, where 4 is a quadratic polynoiual
inw, y, % u, but T, ¥ arve linear forms in x, g, z, v. The tahgent
fourfold at (0,0,0,0,0,1) is now T'=0, and that at (0,040;0,1,0)
is ¥=0. The poiuts of & which arc' conjugate tg/Beth’ these
points, which are given by T'=0, ¥ =0, 4 =0, theﬁ]ie on two
planes; ithe equations of these plancs are, respectively; of the forms
&fwy =yl = zlz = wfny, and xfe, =y/y, = z/z, Sehs,; they are the
interseetion of {2 with the threefold space ca tton to the tangent
fourfolds at the two given conjugate puim-bs?%ﬁrﬁmjﬂlhixyﬁlmﬁfold
space is the polar of the line joining thés® points, and the planes
in which it intersects  contain this ling.* In the original threefold
space there are @@ points, throughleach of which pass w® lines;
and there are oo ? planes, in cach gf*Wwhich there lie o # [ines. There
are thus, on 02, in the fivefold spaee, two different systems of planes,
each 0% Through two poigts'of the original threefoid space there
passcs one line, and two p{l{l&s mect in one line; but there is not,
generally, a line through\a given point which lies in a given plane.
Thus, in the fivefold spare, two planes of {2, of the same ?stem,
have a point in copintn, but two planes of different systems do not,
in general, intersdet. In the original space, if a point lie in a plane,
there is a mpg&(pencil) of lines through this point which lie in
this plaues Zj‘hus, in the fivefold space, if two planes on {1, of
different §¥stems, have a point in common, they intersect in a line,
lying o}, and every two points of the line are conjugate to one
another.
{(The planes of the quadric fourfold treated with the
symbols. The existence of the planes of the guadric fourfold 2
1s immediately elear from the equations, The equation of I can be
supposed to be A2+ 4 »® = A2+ p?+ %, where, in terms of the
original line coordinates, A=1—10, A'=1+17, ete. If a, by, 61,
oy bas €3y i1, g, ¢; be nine quantities subject to the six cquations
a2+ b o2 =1, apig+ bby + crcs = 0 (7, =1, 2, 8), so that, as will
appear in a moment, they are cxpressible by three parameters, the
equakion of £ js identically satisfied by supposing
kl:alh'{_aﬂ"*"’azvs ' =b0A+ b+ b, v =+ G+ G
these three equations connecting the six coordinates represent a

Q"
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plane. The coefficients, @r sy by €45 i these equations, are such that
the square of the determinant {5 by, ¢;) has the value unity, so that
there are two cases, according as this determinant is 4-1 or — 1.
We can easily see that the three equations of the plane express
that a line, in the original threefold space, either passes through a
definite point, or lies in a definite plane; this point, or plane, is
determined by the coeflicients a,, b, ¢ty that is, by the thrce para
meters upon which these depend. For, the conditions that a lie,
{l,m, ...}, of the original threefold space, contains the point (§,sn¢7),
may be taken to be the three, I'r + m¢ — ny = 0, m'r + nELIE0,
a'r + In— m§ =0, which, together, unless 7 = 0, involve

W+ mm + a0 =0; «

replacing 7', ... by § (N +2), F(V =), ..., we olithin three linear
equations by which N, &, »' may be expressed ihterms of A, p, v;
thereby, explicit expressions, in termns of & 08T, are obtained, in
piace of the coefficients yy By €y, in the th}-e&quations above, The -
conditions that a line, (7, m .. iin the original thiecfold space, lies
in a plan¥(vof $IEAERLELY. (.50, w, phyawe three similar cquations,
with & o, &, replaced by w, o, @, v respectively, but 1 7, ..
respectively replaced by 7,7, ... (Vok 11, p- 57); thus, if we solve
the three latter equations for A%, »', we obtain the same linear
functions of A, y, v as before, with two differences: the unimportant
difference that & », ¢, 7 areweplaced by w, v, w, p, and the important
difference, arising from tﬁz interchange of 4, 7. n with I',m’, n', that
the signs of X', o', v/, ar all changed. Explicitly, with the notation

of matrices (Vol. I,\p\. 67), the formulac in the former case are
found to be O

N, ) = ) (4 ) (0, h=(T-+ o) (T — o) (% 1 v)

where O W= 0, —& o\,
O | ( Lo, -s)

T\ o & 0
‘\;ll(b, in the latter case,

D7 ) = —(p =) () O, s ),
== @A) s ),

where 4 is obtained from by replacing £, #, &, respectively, by
%, o, w. It follows that the aggregate of the lines through a puint,
in the original space of three dimensions, corresponds to the aggre-
gate of the points on a plane on 0, given by such a set of cquations
as the former, in which the determinant, {1y By, €,), of the coetlicients,
has the value +1; but the lines in a plane of the original space
correspond to the points of g plane of O for which the corresponding
determinant has the value — 1. Conversely, when the nine cocflicients
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dyy by, 6, 10 the equations of a plane lying on 3, in the fivefold space,
are given, there ave unique values for &/7, /7, &/, or w/p, o/p, w/p,
neccssary to put the equations in the forms above (p. 205, below).

The propertics of the planes of Q, in regard to intersection,
which we have deduced from consideration of the original threefold -
space, can be deduced directly from the above equations. If
N, ws V)=D (A, g, v) denote a plane onr O of the first system,
depending on (£, 9, &, 7), and the matrix replacing D for another
planc of this system, depending on (&, %, &1, mi), be D, it is easy to
verify that the matrix 1,7 D is also of the same foru, say D,
terms of suitable paramecters, (&, 7., &, 7). Now, the congdition
that the planes (D), (D,) should intersect is, that we should dhe-able
to solve, for A, g, r, the three equations (D — D) (A, g, @Y% 0, or
(DD —1Y(A, p, v) =0, or (D, — 1) (A, g, ») =0 ; namely(is, that the
determinantal cquation for g, {D;—p|=0, shonldZhave the root
p=1. Infact, it is easy to prove that the determinait | B, — p| has
the form (1 —p) (p — ) (p —e7*), with a proper value for 6.
Thus two planes of the first system, or, :ﬁnﬁ@ﬂgmﬂ@bmgnﬁithc
second systermn, lying on , in the fivefold space, have a point in
common. For an intersection of a plane (D)), of the first system,
with a plane, (—D,), of the sccond system, we should, similarly,
require the determinantal equationy), +1]=0. With the notation
above, this can only be satisfied 4f @ = 7; when this is so, howevfzr,
all first minors of the detepmitiunt | D, - 1| vanish, as is easily
seen; the three linear eqqs{lons for A, p, v are then sa.tisﬁed byl an
infinite aggregate (e0?),6f) values. Thus, if a plane of the first
system, on (2, in the ﬂ\%fuld space, have a point common with a
plane of the sccondsystem, it has a line of common points. In
general, the valué/of 0 is 2 tan— W&+ +§g?)% 7 *]; this is o
when 7= 0, N

The aggregate of the planes lying on the guadric {in
fivefold space. We have introduced a plane on {2 as that con-
taining thrée points of & of which every two are conjugate. Such
a plageis, therefore, its own polar plane in regard to Q. And the
$onverse is true. In general, the planc given by the threeequations

K =ah+aop+ g, w=0N+bpt+bpy, V=ahtap+y
contains the three peints (1,0, 0, o, b, 61, 1, (.); oy Bay Co)s
(0,0, 1, ay, &;, ¢,); the polar fourfolds of these points, m vegard to
0, whose cquation is Mi4 p2 4+ =N+ p°+ 7% are, respectively, -
given by
A=\ 4 b oy p=aN Fhp ey v=a) +hyl o
the plane given by the aggregate of the three latter cquations
agrees with the former if, and only if, the cocfficients a., &, ¢
satisfy the six equations which characterise a plane that lies on 0.
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Through any line lying in a plane on £, there passes another
plane on 2, of the other system ; the two planes are, fogether, the -
complete intersection of 2 with the polar threefold, in regard to £,
of the line. Conversely, if any threefold be drawn through a plane
on £, this threefold has for its polar line, in regard to €2, a line
lying on the plane; and the threefold mceets € in a farther Pplane,
Thus, any plane on £ meets, each in a line, 2% planes of 1he other
system, The o ? lines on 2, that can be drawn through any poifity,
0, of O, arrange themseclves in o0 planes, on Q, passing throligh
this point, there being ene plane of each system through eyery’such
line, These plancs meet any arbitrarily taken fourfold, £y each in
a lne; these lincs lie in the threefold in which 11 is\met by the
tangent fourfold of £ at 0. T'wo of the planes of thasame system,
through O, have ne other common puint, and give lines in [T which
do not intersect ; but two planes of different Sdtems, through 0,
have a line in common, and meet IT in intersetting lines, Thus, in
the threefold intersection of TI with the tan;?ent fourfold of 0 at O,
the lines oltaisbdabybithiey phigith on (2,61 the two systems, which
pass through O, are the generators ofi avnadric surface. If oy, =,
be two planes of the first system, from’ these, whose only common
point is O, the plane, &', of the second system, which passes through
any line, /, Iying in @, but not.passing through O, will not mect =;
for the line of meeting wouldSntersect £ in a point Iving both on
= and @, Conversely, if o be any plane of the sceond system
which does not meet 'zar;; the plane, w,, of the first system, which

contains a line, /, lying on ', will meet =, in a point, say O:
and, then, in an in\ﬁ)%ite number of ways, a plane of the second
system can be dréwn through O to meet w, and @, in a line. We
thus see how tdpass from any one plane on {2 to every other plane
on £); Dal%’&l}', by suitably repeating the process of drawing,
through alplane of either system, a threefold which determines a
plane ofithe other system as its residual intersection with 0.

E&\I. Let A, A" be two conjugate fourfold scetions of Q. Con-
sid\er’the line in which A meets a plane, w,, of the first system on

&5 through this line therc passes a plane, 7, of the second system;
consider the line in which @' meets A': throtgh this line there
Ppasses a planc, @, of the first system, Prove that =, is also obtained
from =, if the same construction is made with the interchange of
Aand A, Two Planes on 0, of different svstems, which mect In 8
line lying on A, correspond, in fact, to a point and its polar plane,
in the original threefold space, taken in regard to the focal system
given by A (ef. Vol. 1, p- 66, Ex. 10),

Ez. 2. The representation, in the space of five dimensions, of
the pqlar line of a line, I, of the original threefold space, in regat
to a given quadrie surface of this threefold space, is also interesting
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Let one point where I meets the quadric be the intersection of the
generators g, ¢; of the quadrie, and the other point, where 7 meets
the quadric, the intersection of the generators p,, g,. The generators
I Gy of opposite systems, meet in a point, and the generators
P2» ¢ meet In a point, the join of these two points being the polar
line, 7', of £, in regard to the quadric. Correspondingly, in the five-
fold space, let L be any point of (15 let the tangent fourfold of O
at L meet the conic, on ©, which represents one system of generators
of the original quadric, in P, and P, ; to this conic there is a conj uA
gate conic on {1, as we have secn (p. 48); let this be met by the)
tangent fourfold of 3 at L in §, and @,. Thus the lines P, Q, I':"EQ.‘i
lic on 0, but do not intersect ; and the planes LP, @, LP,@,lie on
Q, intersecting in L. These are of the same system. Through'each
of P,@,, P.@, there pass also plancs, on (), of the other system ;
their point of interscction, L/, represents the polarJdizes ',

We may remark, further, that the lines P4, RBQI lic on Q, and
there are plancs, on Q, of the same system, fhiren, L:_these which
intersect in L', and planes of the other s¥std, aﬁ% afoﬁ'éﬁ%ﬂh%s&
which intersect in Z.. In other words, the @ehstruction, as stated, is
valid without distinction of P, and Py, or 0f @, and §,. There are
i_n the figure, six points on Q,(P,, P, Qo e, L, LY); twelve lines on 0,
(\_1)1Q].) P‘zQﬁs Ples P‘.&Ql} LPls Lst LQH LQm LJPH L’Pza LJQI'} LrQE);
four planes on Q of one systemXP,Q, L, P.Q.L, P,Q.L', P,Q L),
and four others of the otheén system, (PQL, P,Q.L, P.&,L,
PN, o\

The representatio o.f eongruences of lines of the original
space. The lines of tlze\m‘iginal threefold space, whose coordinates
are subject to two (zatidnal algebraic) eonditions, are o5 ? in aggre-
gate; they are saidito form a congruence of lines. We have, in
pm‘ti[:ular, spokendof the lincar congruence, of lines common to two
linear completedy which are the transversals of two fixed lines; they
are such that\one of the lines passes through any arbitrarily taken
pomt, of\general position, and one lies In any arbitrarily taken
Plane! 0 general position. The lines of & linear congruence are
represenited, in the fivefold space, by the points of a quadric surface
lythg’on Q, having, clearly, one point of meeting with every plane
on {2, A more general congruence of lines, in the original threefold
space, is that formed by the chords of a (not plane) curve of this
space; this, also, consisting of « * lines, is represented, in the ﬁvF-
fold space, by the points of a surface lying on . We proceed, in
illustration of general ideas, to find the order of this surface. In
general, we mean by the arder of a locus, of k dimensions, lying in
space of n dimensions, the number of points of the locus which lie
on & linear manifold of dimension 7 — %, when this number is the
same for every such general manifold. Thus, the order of a surface,
4

B, G. v,
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in space of five dimensions, will he the number of its points of

~_ intersection with an arbitrary planar threefold. We have scen that

£

. sum of the numbers of points in which this surface meets two Planes

there are threefolds meeting Q in two plancs, of different systems ;
to determine the order of a surface lying entirely on Q it is con-
venient to take snch a threefold. This will meel: the sorface only
on the two planes, Thus the order of a surface lying on (0 is the

/

of different systems on 2, say k and ¥, respectivcly; that thes
numbers are both unaltered whatever two planes of the two systenis
be taken, appears from the possibility we have remarked, of Passing
from any plane on £ to any other by means of interscctifi@ ‘three-
folds. In the case of a surface, on {3, which represents the chords
of a curve in the original threefold space, the numherya/of points
common to the surface and a Plane of the first systein on £, is the
number of chords of the curve, in the originalispace, which pass
through an arbitrary point of gencral positiothin this space; the
number, %', of points of the surface unya\\plane of the second
system, iy thedlmwlbleranf.ofokls of the ‘¢urve which lie in an
arbitrary planc of general position. In‘the fivefold space there are
two tangent fourfolds of 2 passing thveugh a given threefold; their
points of contact with () are the jitersections of this with the polar
line of the threefold in regardte 2. Thus the order of a surface,
lying on 0, is also the numher of points of the surface which are
conjugate to two arbitragily “taken points of £; in the original
threefold space, this nuniber is that of the lines of the congruence,
which corresponds to thé surface on 0, which belong to an arbitrary
linear congrucnce. Hor the congruence consisting of the chords of
a curve of order gy in the threefold space, the number, by what we
have scen, is & @4 (m — 1), where % 1s the number of chords of the
curve passing through an arbitrary point. If p=3(m—1)(m—2)—h
this numheﬁis (m—1y—p.

Number of lines common to two congruences in three-
fold &pace. It can be shewn that two surfaces on £, of which the
firstNmeets general planes on £, of the first and second systems,
on Q, of the first and second systems, respectively, in & and ¥
points, have in common A%k + A% points. In the original threef(_)ld
space this is the statement that two congruences of lines, of \_vhh’-‘h
the first has & lines through an arbitrary point and A’ lines in an
arbitrary plane, and the second has % lines through an arbitraty
point and ¥ lines in an arbitrary plane, have in common a_number
of lines given by ik +A'K. There is a theorcm, for algebraic curves
lying on a quadric surface in space of three dimensions, that such 8
curve meets all the generators of the quadric, of the same system, 11
the same number of points; that,if these numbers, for the two systems

.Jespectively, in % and %’ points, and the second meets general planes
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of generators, be r and #/, respectively, the order of the curve is
r+ r'; and that such a eurve, say (7, '), meets another curve, (1, #'),
of the quadvie, in 74" 4+ +s points; the theorem may be proved by
projecting the curves into plane curves, from a peint of the quadrie,
so obtaining curves with two multiple points of orders r, #’, and
with the sane two points of orders s, 5. We shall agsume this
result, in ovder to uﬁ‘)taiu the theorem above enunciated for the
number of intersections of two surfaces lying on £}, in the space of ¢
five dimensions. We may denote these surfuces, respectively, by
(A, By and (k, &), Let O be a point of 0, not lying on eithen,
surface, and 11 be an arbitrary fourfold space. When we }])_.mject
the points of Q, from O, upon TI, the planes on Q which“pass
through O determine, in [1, the generators of a quadric, surface, w,
as we have scen; this quadric lies in the threefold space X I1, T), in
which 11 is inet by the tangent fourfold, 7', of Q at0 The surface
(&, I}, on (2, being met by an arbitrary threefold\in"4 + &' points,
will project into a surface in the fourfold spaceNIP; and this, being
met by an arbitrary plane in II in A + &' Q}@,’W”ﬁﬁ!’l&@iﬂdﬂr
h+ k. ‘The surface (4, &) will be met by'the'tangent fourfold 7 in
a curve: this projects into a curve lying bn the quadric o, having
the property of meeting the generators of the two systems of m,
respectively, each in £ and & points,“We assume that two surfaces
in fourfold space, of respective oters M and N, which have not an
infinite lllllllLEP of common points (as those of a line, ete.), have
MN common points. Thu§ the two surfaces, in II, obtained by
projection trom Q of t“",()'-‘hil'fﬂﬂes, (&, &) and (k, £'), upon £2, have
{(h + 1) (e + &) commion ‘points. These, however, arise in part from
only appurent intepsections of the two surfaces (4, &), (&, ') upon
12, namely by linessthrough O meeting both these surfuces, but not
in the wane pitt!  Fvery such line, meeting {2 in three distinct
points, will Aig~entirely on 2, and be, therefore, in the tangent
tourfold 27Nanch a line will give an intersection of the curves lying
on the gaidiic o, which are the intersections of w with the surfaces,
in thefourfold space I, arising from projection of the surfaces
(el 8y &, on £2. The numier of such intersections, we have

remarked, is A& + W'k, The number of intersections on {1 of Pll'e
gurtnces (b, 1), (ky &) is thus (h+ & Yk + k') = bk ~ K&, or hk + K&
as we desited to prove.

Er. If h k be the respective numbers of chords that can be
deawn from an arbitrary point,to two given curves of orders m, n,
i threefold space, the number of common chords of these curves is
he+3im— Din—1Dmn. : .

It may be remarked that the surface on £, corresponding to the
chords of a curve, in space of three dimensions, meets & plane on {2
which corresponds to a point of the curve, in an infinile sggregate

—z
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of points ; these points form a enrve of order m — 1 s if the original
curve be of order m.

The chords of a cubic curve in the original threefold
space. Veronese’s surface. An important particular case of
the preceding is that of the chords of a cubic curve in the original
threefold space. Of these chords, one passes through an arbitrary
point, and three lie in an arbitrary plane. "Uhe corresponding sur:
face on Q thus meets the planes on (2, of the first and seecud
systems, respectively, in one and three points, and is of ordeg,fon,
having four points of intersection with an arbitvary threefold. The
axes of a cubic developable, in the original space, similarly give a
surface on © for which the corresponding nunibers are three and
one. We may denote the former surface by ¥, and thwlatter by V',
That the surface ¥ is of order four is equivalent{ %é have seen, to
the fact that there are four chords, of a cubitidurve in threefold
space, which meet two arbitrary lines of this)space. This may be
verified directly, for example, from the factdhat the chords of the
curve whi’fﬁ'n"th%ié‘f%‘t‘fhbfﬁlfé’ f& Projectedfroin a point of the_lcurve
by the tangent planes of a quadric 2ene (Vol. 11, p. 185, Ex. 8).
The surface ¥ meets 0! planes of the first system on £}, those
corresponding to the points of thelghbic curve in the original space,
each in a conic; and two suchedohics intersect in the common point
of their planes. But therelare, in fact, % * comics lying on the
surface ¥, whose plancs do, not lie on . TFor, if an arbitrary line
be drawn through a poifit®of the cubic curve in the original space,
there is an infinite merate of chords of the cubic curve mceting
this line; these chords form one system of generators of o quad.rlc
surface, and megf the curve in the pairs of points of an 111\-'0_111’E1011
on the carves{Ct. Vol. 11, p. 128.) We have seen that the lines of
one systemyef.generators, of a quadric surface, in the original space,
correspond, to the points of Q lying on a conic: further, an involu-
tion onhe cubic curve is determined by two pairs of points, that
is hj\%wo chords of the curve; and two such involutions have &
coimon pair of points. Ilence there are, as stated, oo? conies of
“which lie on the surface 7 ; one of these conics passes through any
two chosen points of ¥, and any two of these conics have a common
peint. The conies on ¥, previously remarked, whose planes lie on
Q, arise among these. -

In more detail, every quadric surface containing the Oﬂglm"t
cubie curve, is determined by the chords of this curve which mee
a line drawn through an arbitrary fixed point, K, of the Cm"]:a-
Thus, ift we take any fixed plane, %, lying on {2, from among toi
o« * which meet ¥ in a conic, and take, in this plane, a point, 2.n ¢
generally lying on ¥, then, the tangent fourfold of {2, at this poms
not only contains the plane «, but also meets ¥ in a conic; and, 38
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P varies in the plane «,all the oo ? conies of ¥ are obtained. Whes
P is taken on ¥, that is, on the conic in which the plane « meets
V, the tangent fourfold of {2, at P, contains, beside the plane &, a
conic whose plane lies on Q5 and all the 0 * such conies are obtain-
able in this way., Conversely, the plane of any one of the conies of
¥ meets the planc x in a point, and lies in the tangent fourfold of
2 at this point, which also contains the plane «. If a line be taken
in the planc x, the tangent fourfolds of O, at the points of this
line, will meet ¥ in conies having a common point; and the tangent
fourfold of £ at this point will uteet the plane « in this line, s
follows from what has been said, but is obvious by recarring\to the
original threcfold space, wherein, corresponding to thegding of «,
there is a flat pencil of lines passing through the poftit™K of the
cabie curve. Thus the points of # are in unique.gerfespondence
with the lines of the plane x. Further, it can We shewn that the
points of I which lie on an arbitrary (planar) fourfold give rise, in
this correspondence, to lines of the plane #ahich ltgqch & conic;
for this fourfold will meet the conic, nn\f’Withlu éof?é‘&‘flgﬁ it
any point, P, of the plane «, in two pothiy’; the tangent fourfolds
of © at these two points of ¥ will rheet the plane « in two lines
passing through P. Thus, the cogtdinates of any point of 7 are
proportional to quadratic polyfemiials in three parameters, the
Cﬂ?l‘dil’lateﬁ of any line of the p]é.he x. (Cf Vol. m, p. 223, Ex. 5.)
We may obtain the explicit{éxpressions by reference to the original
threefold space. "The cubic\etirve being given by points (2, £, 6,1),
the point & being for 6'\;?», a plane, through K and the chord (8, ¢}
of the curve, has the éuation, in terms of coordinates a, y, %, £ in
the threefold spacey u (@ —yiy + o (y — k) + w{z—tk) =10, whete
g+ ¢=—ufu, 8¢\= wfu. Thus the coordinates of the chord (8, ¢)
are (ww — o, Uy — o, ww, wv, w*); these are the coordinates of a
boint of theéysurface ¥ in terms of the parameters w, v, ©. The
t&ngcglt;i%ﬁnid of £} at this point of ¥, with Z, m, ... as current
coordigiabes, has the equation .

S N T 4 8 (wu — ?) 4 mwe 4+ m'on + nwt — Rt =0,

Xhe line which is the intersection of this with the plane # may be
téund by substituti ng herein for I/, m’, #' from the eg uations of the
plane « ; these are UrtmE—nn=0, w'r+nk—If=0, w'r4+In—mE=0,
where £=Js 5 = 2, =% v=1. The rcsult of the substitution is
found to he : :

(e + ko + w) [Re+ m (0 — ku) +n(w—ke)} =0;
the first factor of this vauishes only when the point (u, b, ), of the
;u‘lurfaee‘V, is on the plane & ; theé vanishing of the second factor
Ieafernllr}es uniquely the point (%, v, w), of ¥, when the line in the
Plane « is given. The lines of the plane « which correspond to the

Q"
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the threefold space, there can be made to correspond a sphere; a
sphere, conversely, corresponding to a pair of lines, polars of one
another in a certain focal system.

Now consider two points, P, Q, of Q, which are conjugate to one
another, and so represent intersecting lines of the original threefold
space. We desire o sec that the spheres, which correspond to these
lines, touch one another, The line PQ lies wholly on £ it meets
il in a point, say H, also lying on 2 this puint is, thevefore,
the quadric, U, given by Q and II. Let the tangent, fourfolds of )
at the points P, @, H be, respectively, denoted by ¢, 4, {4 >ythe
tangent planes, at H, of the sections (U, &) and (U,,&), dre,
respectively, the planes (1L, £, 2;) and (11, tos En). Nowyibds casily
seen that the tangent fourfolds of 0, at the points oflime which
lies thereon, form a range (pencil) of fourfolds ull Faseing through
a threefold ; this threefold is then determined asghe Intersection of
any two of the fourfolds. The threefolds (EpNyY and (#g, £y} are
thus identical. Wherefore, the planes (I, ¢, %) and (T1, #,, £5) arc
identieal. T\hw“ﬁh%wg}uh}w‘ﬁr’ghﬁgpheres tained by projection of
the sections (U, ¢5) and (U, ty), from ang“point, 0, of U, touch one
another at the point which is the projection of H. Asa particular
case, the point O may lie on ¢, ; thewprojection of the section (U, #y)
will then he, not a sphere but, aplane. 'This planc will touch the
sphere obtained by projection, of (I, 1,).

Lz. 1. We may take coordinates, x, Y, %, &, w, v, in the fivefold
space, such that =0 is thes fourfold, [1, of the above statement;
while the point, 0, fl'ggn,\vllich the projection is to be made, is
given by o=y =z4£0 =0 the tangent fourfold of ‘-Q, at 0,
may be supposed fo bc ¢ =0; and the tangeut fourfold of £2 at the
point, other thaw®yin which the line # =y =z =u=0 meets {1, to
be v=0. Themythe equation of 2 will contain no term in R and
the coefficieri®y6f = in this equation will be a constant multiple of
?; similarly) there will be no term in ¢%, and the terms involving ¢
will redice to #v. Thus the equation of £ will be of the form
—RQuteb 2 + Ll + Q@ =0, where L and @ are respectively linear and
quddratic polynomials in &, Y, z only; by proper choice of , i, %

<wemay then suppose the equation to be
— vt +w + 2oves 4 2t +3 =0, _

in which @ is & constant., The surface obtained by the intersection
of 3 with the fourfold T, or «=0, and the tangent fourfold of {2
at a point (o, ¥, 2, ¥, «, 7’), is then to be found from

u=0, - t+ 2+’ + =0, -8 — vt +awz + xr’ gy + »'fr =0.
The projection of this surface from 0, by elimination of » from the
two latter equations, satisfies the equation

— U@ Yy + 2 aw's - ) + £ (@ + 3+ )= 0;
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this is of the form
Byt 2 —2(fetgy+h)tdorr=0,
appropriate to a sphere, with -
=o', gt =y, M==24au, =20

If £, @, h and ¢ be given, and we seek (', 7/, &, ¢, w', v'), expressing
that this point is on {} we first obtain
gt —c)=u"(a’- 1),

and then, to each of the two solutions of this, a unique set of rakios
#:y 5 ¢ 19 :v'. Thus the two points of £, or the two lnes of
the original threefold space which correspond to a givell sphere,
are obtaiuable. e\ .

The condition that two spheres (£, g, Ay, ) andd( £, gy, ba, ¢2)
should touch one another, which is (Vol. 111, pp T 78)

LIt i@k ot (f+ g thi=a) (2 +gaadd —0)—4(o+a),
leads, for the corresponding points (.z'l,\%\:g‘.}?nu ' (132:"3(1;2? ﬁ';ijof
0, to the condition AN N

By + i+ 2 2+ (3 a) (2 + agﬁ_,)_l- gty (3% — 1y =08, + 1515
if the lower of the am biguous- sjgt{ \be taken this is the same as
T+ Y Yy B2 a.(u;'zg a2 + Uit = by F ity

this is the eondition that"t}\le two points of £ should be conjugate,
or that the correspéxk&iﬁg lines of the original threefold space
should intersect. Im\words, if two spheres touch, then either of
the lines correspafiding to one of the spheres intersccts one of the
lines corresponding to the other.

Ez. 2. ;;}"pr_cceding section (on p. 36), we have regarded =
sphere in\threefold space as arising by projection of a scetion, by a
thl'eefole[,\of a quadric threcfold, T, in fourfold space. Two Spher.es
will thew touch if the corresponding quadric sections tou.ch, that is,
iﬂthé poles of the threefolds which determine thc:se sections, taken

\i{l}egard to U, lie on a line which touches U. With the figure now
nnder consideration, let M be the pole, in regard to £, of the four-
fold II; then prove that, if P, @ be two points of 0 \:vh:ch are
conjugatc to one another, the plane MPG meets II in & line
touching U, or (2, M), at the point H, where the line Pg
meets i, . )

Ly, 3. Given four spheres, we can prove, either from the 'pn.mt
of view of the preceding section (11, p. 36), or from the point of
view of the present section, that there arc eight pairs of spheres
touching all of them. From the former point of view, we consider
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four threefold sections of a quadric U in fourfold space, and the
enveloping cones of U at the points of each of these sections, The
polar threefold of a point which is common to these four cones, in
regard to U, will give a section touching the four given sections
(cf. below, Chap. I1). There are however sixteen connnon points of
these four cones. From the present point of view, we assume that
four lines in a threefold space, of general positions, have two
common transversals ; this is only equivalent to the statement that
the tangent fourfolds at four points of the fourfold quadric fin
the space of five dimensions, meet in a line, which then intepsects
Q in two points, To the four given spheres there corpespond, in
the manner explained, four pairs of lines. Every fourdines, chosen
from the available eight, which are so taken that no{two belong to
the same pair of lines, have two transversals; these/give two spheres
touching the four original spheres. :

Eg. 2. The special case of the preceding cxantiple, that there are
eight spheres touching four given planes, ofia threefold space, may
likewise be gxaminsd diiwmodhgnnints of 4dew. It will be sfficient
to take the point of view of the preséfibisection. To u point of £
lying in the tangent fourfold of Qfab O, there corrcsponds, not a
sphere, but a plane. To four peipts of O lying in this tangent
fourfold at O will then correspend four planes. These four points
determine a threefold, from athith only one tangent fourfold can be
drawn to touch {3, beside the tangent fourfold at O. This gives
rise to one sphere touching'the four planes, in the original threefold
space. Converscly, a @lven planc of this space leads to two pomts
of Q, lying in the tangent fourfold at O, whose join passes through
the pole of TI in'regard to 0. From this the eight spheres touching
four given plafigs can be inferred. )

Ez. 5. Thehgure of a double six of lines in threefold space 18
obtained.hy’starting from five lincs having a common transversal
(Vol. fafyp. 159). Thus, if five planes be taken, and a properly
chosén'one of the spheres touching every four of these planes, the ﬁ‘:ﬂ
spligres so obtained touch another sphere (J. I1. Grace, Camd. Phit.

mf.{?i'anmction?, xv, 1898, p. 167).

’ Generalisation of Wallace’s theorem. The theorem of
the double gix. A theorem for six lines with a common
transversal. We consider now a set of six connected theorems.
We state them, in the first instance, for space of five dimensions;
remarking, later, on their meaning in ordinary threefold space.

1. In fivefold space, let six arbitrary fourfolds be given passimg
through a point which lies on a quadrie, 2. Every four of these
meet 1n a line, having a further intersection with . Thus, from
five of these fourfolds we obtain five further points of £ ; and these
five points detertuine a fourfold, passing through them. In all, then,
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we have six such fourfolds. The theorem is that these six fourfolds
meet in & point, and that this point lies in {). :

2, Dually, let six arhitrary points be taken on the tangent four-
fold at any point of . Four of these points determine a threefold,
from which can be drawn, to {2, a further tangent fourfold, beside the
original. Thus, from five of the points we obtain five further tangent
fourfolds of £1; and these meet in a point, not generally on Q. In
all, then, we have six such points. These six points lie on a fourfold; £
and this touches £2.

8. Through a point of O let five fourfolds be taken, each{ of
which touches Q, at a point other than that throngh which~they
all pass. "The line of intersection of every four of these meets™{2 in
a further point. In all there are five such points, lying.on 8. The
theorem is that the fourfold determined by these five points touches
). Thus, also, the tangent fonrfolds of {1 at thesédiye points have
for their infersection a point which lies on ).

4. Dually, let five points be taken, on a tangent fourfold of 0,
which ave also on €1 itself; any four of th’éﬁﬁ(&lit&?ulihear;t}wmmﬁmld,
from which another tangent fourfold cai\ be drawn to ©. In all
therc are five such new tangent fourfolds.)The point of intersection
of these is on . 'Thus, also, the peints of contact of the five
fourfolds are in another tangent faurfold of ().

5. Through a point of O letwix fourfolds be taken each of which
touches (2, at a point other thai that through which they all pass.
By theorem (8) above, evéry five of these fourfolds determine a
farther tangent fourfoldb 2. In all there will be six such further
tangent fourfolds. THe theorem is that these mect in a point, and -
that this poiut is ém (. Thus, their six points of contact are in
another tangent fonrfold of L.

6. Dually, Jet’s1x points be taken on a tangent fourfold of 2
which are al#o"on O itself. By theorem (4) above, every five of
these dej;éq:\minc a new point of 2. The six new points of £} so
found, lj'e\Jn a fourfold ; and this touches £. )

Inggard to theorem (1), we recall the proof above given (p. 19)
pEthe theorem of Wallace, that the four circles containing the
tridds of intersections, of the sets of three out of four arhitrary
Nnes, in a plane, meet in a point. A corresponding theorem, for
the loci which correspond to circles, holds in space of any ever
number of dimensions (J. H. Grace, Caomb. Phil. Trans., xvI, July
1897, p. 163: Kithne, Crelle, cxix, 1898, p. 1863 cf. Camb. Phil.
Proc,, xx11, Part 1, 1924). That this is so will be clear from the proof
of thearem (1). In regard to theorem (4), we notice that, when
points of a quadric €, in space of five dimensions, represent lines
of a threefold xpace, this is equivalent to the theorem of a double
six of lines; the theorem (4) is equivalent to (8). The theorem
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(6), in virtue of (4), is a particular case of (2); and the equivalent
theorem (5), in virtue of (3), is a pwrticular case of (1), This
theorem (6), however, is equivalent to the following, for liues in
space of three dimensions: Consider six lines, in space of three

imensions, which have a commmon transversal, no two of the lines
Intersecting; from every five of these, by the theorem of the double
six, let there be found another line. Then the six new Tines so found
have a commmmon fransversal. Let the six lines be denoted here

a, b, ¢, d, ¢, f, their common transversal being £ It can be shewn
that the locus of a point, such that the planes joining it¢tg ithe
seven lines all touch a quadric cone, iy a cubic curve, say, 3, Kaving
the six lines a, b, ¢, d, ¢, /" as chords; dually, the planes/meeting
the seven given lines in the points of a conic consfitute a cubie
developable, say ©, of which the six lines «, &, ¢fdh'¢, f are axes
(Vol. 111, p. 195, Ex. 7). Further, if, with the ﬁxt‘(} Jines a, b, ¢, d, 6
and their common transversal, £, we define hldouble six of lines,
and denote the completing line of this by AV ol. 1, p. 159), then
J1 18 both a chardigt dhepesryeiyand an 2¥i8 of the developable ©.
In fact, the points where % meets £ d¥e)on the planes of @ which
meet in £, and the points where % niegts # arc on the planes of
which meet in £;. Thus we have adetrad of points of & determined
by a tetrad of planes of @ We may, however, select any five of
the lines a, b, ¢, d, ¢, f; andwith these, and ¢, form a double six.
Thereby we shall obtain, siX* such tetrads of points and planes,
associated with % and @&\ But any two tetrads of points of & cubie
curve are both self-pélar in regard to a proper quadric (Vol 1L
p. 148). We can thos infer that there exists a quadric in regard
to which @ is thé\polar reciprocal of &, and the six pairs of limes
such as f and £2a¥e mutually polar lines. Then, from the fact that
the lines a, 8 8, d, ¢, f bave a common transversal, it follows that .
the six linésh, ..., f; have also a common transversal, The theorem
wag gi})e{n.hy Mr J. H. Grace, and this proof by Mr E. K. Wakeford
(ef. Proe. Lond. Math. Soc., xx1, 1922, p- 1273

IRvorder to prove the six theorems of fivefold space enunciated
mgibbvc, it is clearly sufficient, after what has heen said, to prove (1)
\and (3). Proofs are given in the examples following:

Ex. 1. Let =0, ..., ;=0 be any six fourfolds, of fivefold
space, passing through the same point, so that there exists an
identity of the form ga; + ... + gz, = 0. On the line of intersection
of any four of these, say on 2, = 0,4, =0, 2,=0, #,= U, let anot.her
arbitrary point be taken, say, for this case, Py, The five points
so arising, by taking the fours from a,, ..., &, only, dctermine &
fourfold, say Il;. We first prove, as in a preccding case, that the
six fourfolds thus obtained, IT,, IL, ..., II,, meet in a point.

Let © =0 be any fourfold not passing through the poimt common
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to the original six fourfolds. We can suppose the equation of 1l
to be expressed in terms of @y, .5 & only, and z, say & = 0, where

Ei= gy + oo+ Bg® — A0

The point Py, for which: &, = @, = @, =, =0, will then be such
that agrs — a0 = 0, as well as a; + a2, = 0. If we similarly express
the cquation of I1;, without use of x;, in the form &,=0, where

Ep=aga, + o0 F s+ Gl — 85T,

the point Py, will also be given by aw: — aw =0. By comparison
of these two forms for Py we infer that a,=— de. With simiiax
forms for the equations of Iy, ..., II, we prove, in the san@e\way,
that in general @y = — g {7 s=1, ..., 6). If then we add 10 ihe
six cquations & =0, ..., £= 0 the identical equation . Q)

@y + oo+ s = Oy (
we have seven cquations in @, ..., @, v Whose edefficients form a
skew-symmetrical system; the determinant of \these, being of odd
order, vanishes identically, This provesvibhat: -aulihrltymegtiin a
point ; and there is, evidently, a correspdnding theorem in space of
any odd number of dimensions. W
Ex. 2. Inspace of » dimen sions, sl\(z — 1)-dimensional quadrics
which pass through in (n41) —l;o]: ,’g’enera] points are expressible
lincaxly, when ther equations aré’in point—courdinates, by n linearly
independent quadrics passing threugh these points; all such quadrics,
therefore, pass throngh 2% <h=fn(n +1) other points. In particular,
.in space of five dime:;sio:ié}é,ll quadrics (of dimension four) through
sixieen given generalpoints arc expressible linearly by five such
quadrics. In the pheceding example, the original point, through
which the fourfolds“z, =0, ..., @, = 0 pass, and the fifteen points
such as Py, lieyon the degenerate quadric expressed by aes = 0
For ;=0 contuins, beside the original point, the ten points Prgius
in whichﬁn{s;‘ ¢ arc any triad from 1, 2, 3,4,5;and £=0 cont:euns
the fivel boints Pz, in which 7, 5, 4, & are any set of four from
1, 2,8%, 5. Similarly, each of the quadrics xyE,=0 contains the
Saljl,,e\ sixteen points. These six quadrics are equivalent to five in
Niptue of the identity & =0, but, in general, are othgr\‘vlse
linearly independent. Ilence, any guadric through the original
peint and the fifteen points such as Py is capable of being written
in the form Aanfy + ... + Aesfs = 0, wherein, in virtue of 2,£, =0,
only the diffcrences A, — Ag are definite. Every quad}‘ic through the
sixteen points named thus passes through the point common to
£,=0, ..., £, =0. Thus, conversely, if we suppose the original
point, @, = 0, ..., 2,=0, to be upon an arbitrary given quadric, £,
and determine the fifteen points such as Pus 2s the points of
intersection, other than the original point, of the lines such as
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¥y =2y = 2y = 2, = with {2, then the final point £, = Er=...=§=0
will also lie on £, The - 16—1. or tifteen, further intersections
of the quadrics x,£, =0 arc the intersections of the fifteen lines,
such as & =§,=§,= £, =0, each with a fourfold, such as x,=0 or
¥ = 0, these giving the same point. "Thereis in fact exact reciprocity, -
which we can put in evidence by the equalions : Let the minors of
the elements of the last row of the vanishing skew-symmetrical
determinant, of seven rows and colunns, which we have considured®
above, be denoted, respectively, by 4,, ..., 4,, A, thus A s thie
skew-symmetrical determinant of six rows and  columng whose
general element is 4,,. And let 4, denote the minor of J,, in A
itself. Then it is casy to see that 4, = - A,,, and N :

N

Ai=adyy+ ady, + ... +a,dy,, (ry s =1, B>, 0)
Hence we find Az,— 4,5+ ... + 4 E+ Az, and 41& +...+45=0
Further, the final point, § = ... = £ =10, is givew by
wrfv = 4, /A(r=1, B
dbrauljbrary.org.in N

Ezr. 8, ffm(fl\gs(lirer ,Uth(; gr%gl of thesfarm .8 + ... + ey _—:09
for the quadric 0, may be obtained, dizéetly. The quadric, passing
through & =2, = ... =, = 0, is nekessarily capable of an equation
of the form RN
2 (g + 2rtry) + 20 (Ml ..+ 2gtgz) =0, (15 = 1,2, .., 6)

here, for symmetry, weallow terms in & redundant coordinate,
say o, and @, ..., 4 Wre as taken above, in the equations of
£=0, ..., £=0. *The condition that this quadric contain the
point Py, for which' @, =2, =z, — =0, — @ ia; = @q/tt; = Vfthypy 15
one of fifteen equations, which are all of the form

”\gg‘ra =grﬁ8‘5r—1 + gsara's_l - Qa'rx (11' - hs) B
if we riﬁiﬂk’ﬁhese equations as determining the coefficients g, and

- notice ghe 1deutities
1,85
. ) lg W+ (g ritgth, " + Zot, ") ‘Tfms]s = (Eg‘.j-rl,."l.x',-) (agrs), = 0,
3

NP
\ ’ p Birg (Mg — Ae) @ity + Bzhl'a’ra"r =— EA.,J', z (@-rs‘r& - av.l'.l),
s . » £

the equation of the quadric is obtained in the form specified.

Ez. 4, With a loss of symmetry the algehra may he simplified.
We may snppose the fourfold v =0 to be taken so as to be the
same as & =0, so that a,, gy, ..., a,, are zero ; and may take Ag = 0.
That is, we may begin by supposing {2 to have an equation of the
form

1..5
2 Crglpily — (‘z‘l + &+ ... +a‘3:'5)v=0,
5
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the sixth plane drawn through the original point of Q heing of
equation such as 6,3 + ... 4oy, =0. Itis theneasy to compute the
forms of £, ..., &3 and to obtain the result of Fx. 2 as the result
of the vanishing of a skew-symmetric determinant of five rows and
columns,

Ez. 5. The theorems (3), (4) above, equivalent to the double six
theorern in threefold space, may be proved independently of this,
as follows : Let X, ¥, Z, U, T be points of the guadric £, lying in
the tangent fourfold of ) at a point ¥’. Let T be the other point
of O, beside 7', which is conjugate to the four points X, ¥, Z; UM
Take, for the fundamental points of the fivefold space, the)six
points X, ¥, Z, U, V', T, and for coordinates @, 7, 2 845 50
that # = O contains all these points except X, and so for g= 0,2=0,
w=0, the last containing all these points except Ug while v=0
contains all these points except V', and is the tangent fourfold of
Qat T and £=0 contains all these points excebl T, and is the
tangent fourfold of {2 at P”. The cquation 452 will then be of
the form ¢ — Atw =10, where ¢ is of the fﬁ?fﬁxwfdbraulibl'ary.org.in

fyz + gmw + Lhay + Fpau LRGYw -+ Az,
and A is the discriminantal determindnt'of ¢. The equation ¢ =0
represents the quadrie, lying on. 2 in the threefold ¢=0, v=0;
this quadric we denote by H. Iset the minors inAbed B CD,
F,G,H,P, 4, R. A" _

The coordinates of the fivint 7, lying in the tangent fourfold,
t=0, of O, at V", we,denote by (£, § @, 2, 0). The quadric H
contains then the poifik™(, 7, & @, 0, 0); thus this quadric also
contains (Vol. 1, p{ 35) the point (£, 715 &1s @15 0, 0), where

& =AE A, m=hByt, &= CeYy oo =Do™. :
T}:_-er_'efore Q.,cg)}liains the point (&, 7, £, w0y, 0,2). We prove that
this is, i’\fact, the final point of the theorem under consideration.

Let X"be the point of (1, beside 7, which is conjugate o
Y, ZXV, T'; so ¥’ the point of &, beside ¥, conjugate to

A& U, T and Z' the point of 0, beside ¥, conjugate to
X)Y, U, T: and U’, the point of O, beside ¥, conjugate to
X,Y,Z,T. We can shew that the coordinates of these points are,
respectively, : '

X'(AH, G P £, & Y (H, B FQmn)

Z' (G, F, R, &, s U (P, Q, R, D, v, @) -
We have defined 77 as the point of I}, beside 7, conjugate to -
X,Y,Z, U. We then shew that the point (515 s 515 @1 0, 2) is
conjugate to X', ¥/, 2, U, T". _
_ The point of coordinates (4, H, G, P, g, E) is at once verified to
lie on ©. The tangent fourfold at this peint is found fo be
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22 — 28, ~vE = 0. This contains the points Y, Z, U, all lying on
#=uv=t=0; and it contains T, or Emt w20 A precizely
similar verification is possible for ¥, Z’, U’ Again, the tangent
fourfold at (£, m,, &, @, 0, 2) is expressed by

& (hy + gx + pu) +m (ha + f + qu)
+ &{gx + fi + ) + o, (pr+ Gy + 7)) = A{;

it is at once seen that this contains the ponts X', ¥, Z', U'NF,
This proves what has been stated. ¢\
NS ©

Note to p. 20, Wallace's theorem, that the fonr conies, through™twoe points,
I, J, of a plane, each containing the intersectious of three ot of four lines of
the plane, all have another common point, may alse be peinsdd by remarking
that, if four arbitrary planes be drawn, one through efclline, meeting in
threes in X, ¥, Z, ¥, then the cubic curve throngh M, ¥, X. ¥, Z, T meets
the plane in another point. For the four conics speMho projections of this
cubic, from X, ¥, Z, T, respectively. A\

More generally if, in n-fold space, there he g‘i3}n two points J, J, and also
{(n+2) primes (;J[J e 0[f gga—‘])-dimﬁnsiunsa;\md we consider the {(n+2)
ralional curvéy 'ﬁj‘?‘l‘l@l’ b 8he®histhe arotgh 7, 7 and the {3+ 1) inter-
sections of {n41) of thesc primes, thenwthese (n+2) curves have (n—1)
further common points. For these curtes are all prajections of a curve af
order (n+1), in space of (n+1) dimelisions, defined as passing through I, J
and through the intersections offmt 2) spaces of dimeusion n, arhitrarily
drawn through the given (n-+ 2} primes.

For generalisation of this tevthe proof of Clifford’s chain of theorems {above,
pp- 1, 31), see F. P. White, @l Phil. Pror. » Xx11, 1825, p. 684, For instance,
that the foci of the five pafabiolas which touch the fours of five given lines, lie
on a circle, urises fro &fact that the chords of & rational quartic curve, in
fourfold space, which meet a plane meeting the eurve in two points, are the
joins of the pairs of 3n involution on the curve and mect this plane iu the
peints of a conig passing through these two points, (We project the curve in
turn from the{edges of a simplex of five points inscribed to the curve, 50
obtaining fivékets of four concurrent circles in the plane, each ¢ircle arising
twice, whoSt\points of concurrence are the projections of the five points of the
curve codjlifate to the vertices of the simplex, in the involution determined
by the'plane on to which we project. The two points where this plane meets
the.cutve are the Absolute points in this plane.y .

o (Wiallace’s theorem is also a particular case of the theorem that planeﬁcublﬂ
\cgz"ves through eight poiuts have another common point (Vol. 1, p. 217}



CHAPTER II

HARTS THEOREM, FOR CIRCLES IN A PLANK,
OR FOR SECTIONS OF A QUADRIC

Grven three lines in a plane, there are four circles touching them ;
{hese circles, we know, are all touched by another circle, the nine-
points circle (Feuerbach's theorem; see Vol. ). In other wardsy
given three lines, we can add to them a circle such that thesfour;
these lines and the eircle, are all touched by four other circles:

Iu the present chapter we shew how, given any three circles in a
plane, we can add to them another circle, which we eall’the Hart
cirdle, such that the four cireles are all touched by-fety other eircles
(Hart, Quart. J. of Maths., 1v (1861), p. 260).

The three original circles are in fact toyched by cight other
vircles, as we shall prove, There are fourtéefy ways of choosing,
from these eight, four circles which all t‘ﬁﬁ'ﬁﬁi‘ﬁl{ﬁﬂé AR ET 8 six
of these ways, the four circles chosen have a common orthogonal
circle; and the four circles consistin®of the original cireles, and
their Hart circle, have also a comuion orthogenal circle. '

We have shewn that circlestin a plane may be regarded as
projections of plane scctionswof @ quadrie. We prove the results
enuneiated as theorems for glich plane sections. 'This appears greatly
to increase the interesy andclearncss of the matier.

The sections of ;K%uadric which touch three given sec-
tions., Let the linés)of intersection of the pairs of the planes of
threc sections ofidqquadric be 0X, 0Y, 0Z. Let the sections in the
plancs YOZ, ZOX, X0Y be named, respectively,a, B, 3 let the
eommon pointéof B, v, on the line OX, be 4 and A’ ; the common
points of gherron OY, be B and B ; and the common points of g, 3,
on OZ,‘b’é% and C'. Let the poles of the planes Y02, Z0X, X0V,
m roghnd to the quadrie, be, l'espcctive]y, P Q R, 50 that the plane
PQB.s the polar plane of 0. The conics B, v, having two common
Paiats, lie on two quadric cones ; the vertices of these cones lie on
the line QR, and are harmonic conjugates in regard to @ and E;
the polar plane of either vertex, in regard to the quadric, contains
the line of intersection of the planes of the sections, and also con-
tains the other vertex. Any plane section of the quadric, which
touches both the sections 8, v, is a tangent plane of one of the two
cones. When the sections are projected on te any plane, from any
point of the quadric, they become two curves which we have ag:reed
to call circles, the projections of @ and R being the centres of the
tireles; the projection'S of the vertices of the two cones which con-
tain 8 and v are the centres of similitade of these circles. Each

b

B, 0, IV,
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centre of similitude is the centre of g circle, coaxial with the fwo
circles, in regard to which these two circles are inverses of one
another.,

Consider, then, the six quadric cones, two containing every pair of
the three sections &, 3, v: by Paseal’s theorem, for the section of the
quadric by the plane PQR, we sec that these vertices Hie, in threes,
on four lines in this planc. I.et  be one of these Ihnes, containing
the vertices of three of these coues, each cone coutainiug two of\the
sections a, 8, v. Consider two of these three cones: as they kave
one common plane section (one of «, 8, v), they will hayeanather
common plane section ; they will thercfore have two comman tangent
planes, which must intersect in the line { containing €ligyvertices of
the two cones. This shews that a tangent plane diawn from { to
one of the three cones whose vertices are on 4,58y ually a tangent -
plane of the other two cones. This plane will thari meet the quadric
In a section touching the three conics a, 8. As there are four
lines 7, we thus construct eight sections q(the quadric touching the
three Sectiolmm_&bmulibl'ary.ot'g.in \$ .

Ex. 1. If two fixed sections a, SLOf a quadrie, which meet in
4, B, be both touched by two othewsections £, 5, which also touch
one another, and the planes ofe, n meet the live 45 in £ and Q.
the range 4, B, P,  is relatet] to the range A, B, I, @, similarly
obtained from two other sucliseetions, £, #'. It is understood that
the sections £, » touch the, same one of the cones which contain &
and B; if ¥ he the voftex of this conc, the theovem is obtained by
considering, on the plane of the poelar of ¥, the section _both by the
quadric and by th&cone. We.then have two conics which touch at
two points, and(,Pair of tangent lines, to one of these, drawn from
a variable poinb of the other, )

Ez. 2. The problem of drawing a circle to touch three given
circles infaplane is sometimes called Apolloniuss problem. Deduce
from #hat s said above the following solution of this, given by
Gerdonne (dnn. d. Math., v, 1817, p. 289): Find O, the centre of
Alie common orthogonal circle of the three given cireles; take one
of the four lines which contain threc of the centres of similitude of
pairs of the circles, and let U, ¥, W be the respective poles of this
line in regard to the three given civeles. Then the JC_ilIlmg.h"C?
OU, OV, OW contain the points of contact with the given circics
of two of the circles which touch them all. (Cf. Poncelet, Prop.
Proj., 1, 1865, p. 138.) o

Ix. 3. Prove that there are four cireles touching threc lines
a plane. Also, that the circle through the centres of three of t_]lesfi
circles, and the cirele containing the three interseetions of the lm+l:1h,
are two circles which have two common tangents, meeting in the
centre of the fourth of the original circles.

£
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Exr. 4. Regarding two circles in a plane as projections of plane
sections, &, /3, of a quadric, prove that a circle cutting these circles
at equal angles is the projection of a section of the quadric by a
plane passing through the vertex of one of the two quadric cones
containing the scctions @, 5. Hence, given three circles in a plane,
prove that a circle cutting these three circles all at equal angles
belongs to one of four systems of coaxial cireles, of which the radical
axis contains three of the centres of similitude of pairs of the three
given circles,

Ez. 5. Consider four plane sections of a quadric, and the vertiees
of concs containing pairs of these sections, twelve points in all, {TFhe
plane containing the poles of three of the four given planes confains,
we have seen, six of these vertices, Omitting the four sueh planes,
prove that the twelve points, with their joming lineg?ahd’ planes,
form a figure of structure 12 (-, 4, 4)16 (3, -, %)8 (B, %, ), arising
from two of three desmic tetrads (Vol. 1, p. 218)\Fhe eight planes
of this figure enable us to construet cight circlesmceting four circles,
given in a plane, all at equal angles.  wwg dbraulibrary.ocg i

Ex. 6. Regardivg two circles in a pladie as projections o]fgp]ﬂa.ne
seckions of a quadrie, the condition théhthe {wo circles should eut
at a given angle is that the range, 9{.’1’0[11’ points, consisting of the
two poles of the corresponding planc sections of the quadrie, and
the two points where the join of these meets the quadric, should be
related to a given range. Piove that a circle cutting two given
circles at given angles cupsany circle coaxial with the given circles
at a constant angle, and fouiches two fixed circles. Construct a circle
cutting three given k'@c]és at given angles (Steiner, Ges. Werke, 1,
p. 21, 1826). N _

Ex. 7. If thre® pircles have three tangents, each touching two of
the circles, wiich meet iu a point, the three centres of similitude
of pairs of fie circles, throngh which these tangents respectively
pass, nob\heing collincar, then they have three other tangents, also
each toQthing two of the circles, which likewise meet in a point,

Lete, B, v be three planc sections of a quadric, U a quadric cone
cofitaining 8 and «, V a guadric cone containing and ¢, and ¥ a
quadric cone containing ¢ aud 8. The pair of cones V, W, as both
doutaining e, have two common tangent planes; so W and U have
two common tangent planes, and U and V have two common tan-
gent planes. If the vertices are not collinear, the three cones have
no commou tangent plane (cf. Proc. Camd. Phil. Soc., xxxu, 1936,
P 1). There is thus a quadrie, say 3, of which U, V, W are all
enveloping cones (Vol. 1o, p. 10). Any section of the original
quadric touching @ and « lies In a plane touching oue of the two
cones containing @ and v; if this cone be U, this plane touches the

quadric 3, Consider three sections of the original quadric whose
52
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planes meet in a line, , the planes of these sections touching,
respectively, the cones U, ¥, W these planes, therefore, all touch
the quadric . Of this quadric, then, the line {is a generator, Let
m be any generator of 3 which meets £ this les g particulsr
tangent plane of every enveloping cone of Y. There is therefore a
plane through touching the sections 8, v+ another plane through
m touching the sections 4, a3 and another plane through m teuching
the sections a, 3. ' N\

Regard, now, three cireles in a plane as projections of three
scctions of a quadric, the centre of projection being a poink,@yof
this quadric. A common tangent line of two of the circles s the
projection of a scction of the quadric, touching the 4w given
sections, by a plane which passes through H. Thede concurrent
tangents, each of two of the given circles, are thus @hojections of
three sections of the quadric by planes which intéyRect in a line, 7,
passing through H. By taking for m the othap generator of the
quadriec % which passes through 17, the theowtm above stated is
obtained. N . L €

Er. 8 Gy rlgeuehl%]i'gflz s th p]{m:eg conslruct 1hree other
circles each to touch two of the given civgles, pach of the constructed
circles, moreover, touching the othéritwo. For the ease when the
given circles are lines, the problem was put by Malfatti, Mem, d,
Soc. Ital. d.- Sc., Modena, 1808,"Vol. x. For this case, and the
general one, a solution was, eninciated, without proof, by Steiner,
Ges. Werke, 1, pp. 35-89. (Steiner's construction was considered by
Hart, Quarterly J., 1, 186 . 219. An investi gation of the theorem
for a quadric was given by Cayley, Papers, 1, p. 57 (1852).
Cf. Proc. Lond. Math, Soc., xxx1, 1950, p. 355. .

The theorem,igasTollows: I.et o, B, « be lhree plane sections of
a quadric, whode planes meet in O, the poles of thesc planes heing
PQ R, resgq(}ﬁvely; let U be the vertex of a cone containing the
sections 3, %, the vertex of a cone containing « and « being v and
of a con€ ontaining ¢ and B being W, these points U, V, W being
m a lifté In the plane PQR. Next, let 8, ¢, 4 be, respectively, the
sechichs by the polar planes of U, V, ¥ the planes of these will
Medt in a line passing through 0, and the sections will have t‘WO
points in common; let 7 be one of these common points. The
section 8, for example, contains the two points common to the
sections 3, v, and the plane of @ contsins the vertex, other than ‘U,
of a conc containing the scetions B, v. Now, let X be a section
touching ¢, Y and a, the poiut of contact with « being 4 snn_ﬂarl}.'?
let 4 be a section touching +, %, and touching &, in the point _B*
and let » be a section touching %, ¢, and tonching v, in the point
C. 'The sections A, u, » are touched in pairs by sections, f?: ¢, \V*
whose planes meet in the line OI, and are also touched in patrs
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by sections, say &', ¢/, Y, whose planes meet i another line OF;
it can in fact be shewn, the sections A, g, v being properly taken,
that there is a section, with plane passing through O, which passes
through 4, and Louches g and v; let this be &'; and that there is
a section, ¢, through O and B, touching » and A, and a section,
¥, through O and C, touching A and u. There is then a section
touching 3, v, and ¢, ¥, say £ also a section, %, touching «, a and
¥, & and a scction, &, touching &, £ and &, ¢'. Further, the
scetions », & touch one another, touching # at the same point;:
similarly & and £ touch one another, and & and 4 toach one a.n()t’h‘ci?.
The sections £, n, £ are those to be constructed. . O

Er. 9. We may casily investigate the equations of thesections
touching the three given sections a, 8, . Let the plangs of these
be, respectively, # =0, =0, x =0, the polar plane of\the point, O,
in which these meet, being ¢ = 0, so that the equationvef the quadric
15 of the form ' RN

it + by + o2+ Yz + Ag: G \j_w%%@aﬁfﬁi‘ary.org,in
Let d=be— f°, F = gh — af; ete., thesc béihg the minors of a, f; etc.
in the delerminant of the quadratic forny’A, whose value is
abe + Ygh — af® Tbg“ — ol
The pole, P, of the planc a hagthe coordinates (4, H, G, 0), the
poles of @ and R being, respeetively, (H, B, I, 0) and (G, ¥, C, 0).
The equation of a quétdri,gxéone containing the sections 3, v 18 of
the form {a, 8, ¢, £, &> bRy, 2P+ 2Ayz =17 and X is such that the
three derivatives of theleft side all vanish at the vertex, (z', %/, £, 0),
of this cone. With A2 A [(BCY — FT, these are satisficd by taking
(f,@j,k’):B-%(H, B, F)—C~*(G, F, C),
that is, .tB‘_.?}_H_C—%_G’ Y = B~ B—C % F, ctc. Herein
the signgCof 4%, BY, €} are arbitrary, and (BC)! means BY. C3, ete.
If, fordhe sake of brevity, we use X to denote the set of four co-
Pa A

ordinates 4 ~%(4, H, G, 0), with, similarly, ¥ and Z for the sets

A (H, B, F, 0), C-4(@, F, C, 0), then three cones, each con-
taining & pair of the sections a, 8, v, with vertices on a line, /, are
those whose vertices have coordinates, vespectively, ¥ —2, Z— X,
X-¥. Itis then easy to verify that the plane whose equation Is

(@2 + by + g=) 43 + (ha + by + f3) B + (gw+ ¥ +ex) CE =4, M
containg this lHne 7, and touches the three sections &, &, 7, provided
M satisfy

M=ad 4+ 1B + o€ + Y (BCY +2g (CAPE +2h (4B} - A5
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for the condition that two sections of the quadric touch one another
Is that the enveloping cone from the pole of the plane of cither
section should contain the pole of the plane of the other section,

The possible signs of 4%, B ¢4, m? give the eight sections
touching «, 3, «.

Ez. 10. Through any one of the sections a, in Fx. 9, pass two
of the cones used in the construction. These concs have then another
plane section ; shew that this lies on the plane whose equation\3

y[(CAY — @)= z[(4BY - H]. <O
The three such planes thus meet in a linc, passing ,thr?)ugh the
point O in which the planes a, B, v intersect. N

Ez. 11. If from the vertex (&, 'y £, 0), above ﬁa.kcn, of a cone
containing the sections 3, v, a conc be drawn toredntain the section
@, prove that this cone meets the quadric agiiy'in a section lying
on a plane, thraugh O, whese equation is 8\

[(BER - Bhab B orgiCh) (B by — 0~ 1) =0,

Fz. 12, Prove that the polar plafeg*of the vertices of the three
cones used in Ex. 9, which are o, theline £, are respectively

Bty Cdz=0, Cizai t2=0, 4 ixz—B iy=0
These are the sections 6, c,{;,f A of the cnunciation in Ex. 8; the
point I is then on the lingd ~fa=B~iy=C"1z

Ez. 18. Shew tha{iiﬁ we Introduce A, g, v such that

coa]x§ {(be) " f, sinh=(be)" 242, ete.,
and take s=4 @i{- # + v}, the section above found, touching a, 8, v,
lies in the plane
zatfos (s — A) + bk cos (s— p) + et cos (s—v)—t,=0.

Hcre;iﬁ%ne signs of a¥, b¥, c? are arbitrary, and (bc)® means EJJ? et
a .Qﬁéhge of a? into —a¥, for example, leads to the substitution of

e o, T+ v, 7 + 5 respectively for g, » and s. Four of the eight
\t’angent secilons are aobtained {;y substituting + A, + g, + v, respec-
tively, for A, p, v, retaining the signs of a%, &%, ¢¥ ; the other four
are then obtained by changing a3, b, ¢} into — at, — bk, — e, in the
first, four, _
Ex. 14. With the substitution of Ex, 13, the plane of Ex. 11
becomes
za® + (yb?¥ sin v — zct sin ) sin ( — v) = 0.
Kz 15, Taking p, g, r such that
bp=1-FBO™, 3g=1-6(C4)} }r=1-HB)}
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prove that a section touching the sections by #=0, 5C “d_pd45=0,
ad ¥ ~yB ~+=0, namely the section named X in the cnunciation
of Ex. 8, lics in the polar plane of the point (&,7, &, ), where = A5,
=B¥(1 - %), £=CH(1 +g¢?), and 7 is given by
=(a, b, ¢, fr & RO E 7, OF— A
If we put —F(BC)~ Y=cos\ (as in Vol. m, p. 205), we have
pE=2cos } N, ete. ’
The Hart circles of three circles when the four have.a
common orthogonal circle. We consider, as hefore, threedsecs
tions &, 8, v, of a quadric, whose plancs meet m 0. ILet U bé the
vertex of one of the two quadric cones containing the sectjotls 3 and
v. The polar plane of U, as has been remarked, contains the line
of interseclion of the planes of 8 and «; in fact, if Lhese sections
meet, in 4 and A’, the tangent planes of the quailtic; at 4 and A,
touch these sections, and pass through U. If we censider, also, the
quadri¢ cone obtained by joining U to % ’Xrgu?lfbl;he S%clzj:iqlllgl e,
this cone will meet the quadric again in r:gp ane section, s&y &’
thence, the line in which the plane of o’/meets the plane of a, lying
equally in the polar planc of U, will greet the line of intersection of
the planes 3, v in other words, théplane of o passes through the
point O in which the plancs of a8, v intersect. But also the two
cones of vertex U, namely (I : 83y) and (U; a, &), have four common
tangent planes; and these ydM touch all the four sections o, 8, 7, o.
Thus o is a section which, added to a, B, vy, gives four sections
which have four com o'ri'tb.ngent sections. Thus, on projection of
the quadric, the seciionve’ gives & circle, orthogonal to the common
orthogonal circle ,afi.8, 8, ~: such that the four are all touched by
four circles ; thesddikewisc have a common orthogonal cirele, whose
centre is the prdjection of U. The circle given by o’ is a particular -
kind of Haftyeircle, of those belonging to a, 8, v. o
Since smy chord of the quadrie pussing through O is divided
harmogically by O and the polar plane of O, it is clear that the

. 2N

eightisections, which touch the sections a, 83, vy, consist of four pairs,
&iehthat the planes of a pair intersect on the polar plane of 0.
Also, it is clear that there are six such sets of four sections as those
found above, touching 8, v and a,a’; for there are two cones con-
taining every two sections such as 8 and +. Each of these sets
consists, then, of two of the four pairs into which the eight tangent
sections of o, 8, v can be divided.
. The equation of the planc of the section o has been found above,
m Exx. 11 and 14. Four planes touching the sections a, 8, y which

all pass through the point U, whose coordinates are
&, y,%,0y=B"Y, B, F, 0)—C~ (G, F, C, 0),
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are found from

{ar+ hy + g=) 4%+ (ha + by + fz) B + (@v+ fiy+ex) Ch<t, M
by giving to 4% B, % the signs {+, +, +), (+, — =), (—, 1, +),
{~ —, —), respectively.

The Hart circles of three circles in general. Given, as
before, three sections a, B, v of a quadric, we now investipate a
fourth section 8, whose plane does not pass through the intersection
of the planes, &, 8, «, such that a, 8, v, § are all touched by fou{
other sections of the quadric.

It will appear that the necessary and sufficient conditio\that
four sections of a quadric, by planes which do not meet in\h“pdin't,
should all he touched by four other planes, is very sinple It may
add to the interest of the work to state at once what this‘condition
is. Let the planes of the four sections, a, 3, ~, & wdek il threes in
the points 0, X, ¥, Z, the sections 3, v meeting X in 4 and 4,
the sections «, « meeting OF in B and B, thesections a, 8 meeting
OZ in C and ', the sections a, & meeting YZNn L and L', the see-
tions B, & mattingIRUMPINGAEI and the sections vy, & meeting
XY in N and N'. Through each of ghe“six joins of O, X, ¥V, 4
draw the two planes to the points in"which the quadric meets the
opposite join; as, for instance, dra through 0X the planes OXL
and OXL'. Thereby twelve plaies arc found. In general these
twelve planes touch another_quadrie (Vol. mr, p- 54, Ex. 16). Tt
may happen, however, thatithis quadric degenerates into two
points, the planes meetin@hin scts of six, in these two points, In
such case, choosing the-nstation proper] ¥, we may supposc that the
planes OXL, OYM(OZN, YZA, ZXB, XY meet in a point, say
S, the other six plancds, OXL', .., YZA', ..., meeting in a point §”.
Then the line 4dyab lying in Lhe planes OXL, Y74, passes through
S, and so on yatnely, the three lines AL, BM, CN mcet, in the
point 8. Convérsely, if these three lines meet in a point, say 8,
the six.planes OXL, ..., X¥C are easily seen to meet in S; and
then, §$}ﬂarly, the three lines 4L, B'M’, C'N’ also meet in a
point)\say S". 'The condition that this be so meay be eXPI‘e_SSEd
otherwise : Beginning, as before, with the general case, [et points,

S8y°4, and 4/, be taken on 0., 50 as to be the respective harmonic
¢onjugates of 4 and A in regard to O and X ; and let a palr of
poiuts be similarly defined on each of the six joivs of 0, X, Y, Z.
It is then easy to see that the twelve new points so obtained he.
‘upon another quadric; we may call this the harmonic conjugate of
the original quadrie in regard to the tetrad O, X, ¥, Z. In the
particular case when 4L, BM, CN meet in a poiut, say S, the har-
monically conjugate quadric breaks up into two planes ; and con-
versely. These two planes are, in fact, the polars of the pomts 8
and §", in regard to the original quadric.
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What we prove is: If the harmoniéally conjugate quadric of the
original quadrie, in regard to 0, X, ¥, Z, break ap into two planes,
then the scctions of the original quadric by the four planes XYZ,
0YZ, 07X, OXY are all touched by four planes. We afterwards
prove, conversely, that, for such tangency, it is necessary that the
harmonically conjugate quadric should so degenerate,

As before, let w =10, =0, 2 =0 be the planes of the sections
¢, 3, 7y, the equation of the quadric being

((J‘-, 5: C)f; & h][a:, Y, z)ﬂ =17 ) .'\:\
where ¢, =0 is the polar planc of (0,0, 0, 1). For ¢ =0 wig can
substitute a plane, t=0, in eight ways, so that the dondition
referred to, that AL, BM, CN mcet in a point, is satighed? For,
taking arbitrary signs for the radicals at, B, o, _dod’ denoting
H5E by (Be)?, ete, Tet \Y

u=[f+ o], v=1[g+ (@] wHh+ (0B,
and = (-uz.':a-‘)% i, m= (uvw)‘} Bl w}d‘léuamﬁtmily‘or g-in
50 that mn =1, nl=2o, In=w. As the pi'(}dilct of (bc)*, (ca)é, (ab)*
is without ambiguity there are thusteight possible sets of values
for /, m, n. Pulting ¢t=1Ir + mysing — b, the equation of the
quadric referred to 2 =0, y=0,850,£=0, is
axt + by + et -+ fyz + Fogw + hay = (ke + my + nz — £
this wicets QX in the pqiﬁt}A, A given by (14 aya=t, Taking
for X, ¥, Z the pointh\\\h'ére 0X, OY, 0OZ meet £=10, the points,
L, I, where the quadic meets Y Z, are given by
(m* S8V + 2 (mn = f) yz + (w0 — o) = 03
since f= ngri ﬁé;('bc)%, these points are given by
,§~‘ {(m ibé)y:(nici‘) 2,

Henceadith suitable choice of notation, the lines AL, BM, CN
meet T ‘the point, S, given by ({—a¥) 2 = (m — 5‘})3 = (”( - "{1}) 2=t

nd)the lines 4'L', B'M’, C'N’ meet in the pomt, S’ given by
(Ifahye=...=t Con verscly, it can be shewn that these inter-
sections require the plane £=0 to be one of the el%hj: we have
taken, Tn general, the harmonically comjugate quadrie of that
given by the cquation (a, &, ¢, d, f, @5 o> 2y @ 708 ¥ % 1 = 0 has

an equation obtained from this by change of £ hyp,q, 7y TE-
spectively, into — S =& —hy —py =@ — 1 In the present case,

since f'=@mn — (bo)}, g =2nl—(ca)}, b=2m—(ab)}, the har-
menically conjugate quadric is found to be

(za® + bt + wc?y — (I +my +nz + £p=0. -
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The point §, or (E—aé).r= ... =1, 13 then easily verificd to be the
pole of the plane ({ — et} & + (m — Wyy+n-chHhzt+t=0,in regard
to the original quadric. This plane we denote by o, the plane
which is the polar of §” being denoted by o’

To prove, now, that the sections a, &, v, and the section, say §,
of the quadric, by #=0, are all touched by four plancs, consider
the section by the plane

xat cos (s ~ N+ ybt cos (s — u) + =t cos (s—-v)y—t, =0, \
above found (p. 70, Ex. 13) as touching the sections a, 8, o/ here
cosh = (be) "% £ etc., and g = } (A + £+ v). The cone jofiing O to
the section of the quadric by this planc is given by tl\;e.}gquation

axl+,. +c2% 4 2yz (bc)* cosh + ...+ 2ay (ab)}cos v - [:cu'} cos (s - R}{&'.'-r ¢¢* cos {8 -2 F=0

This is easily found to be the same as is obtaihed by raticnalising
the equation

AN/
, . e\
[zat sin {&‘i‘“’x‘ﬂ‘j’??ﬂ’f}}ﬁ?&iﬁ’ (= p)}%.-%\[lz’c% sin (s — p)JE = 0.

Putting p, ¢, r as abbreviations for gaifl:(s'— A), sin (s— p), sin(s — ),
respectively, any generator of the\cone is given, in terms of &
parameter, 8, by N\

(watp)t: (ybt hlectii = — 0:0 - 1:1;
in particular, one generatéiNis given by

aat: gt a kS p(q—rri g —py i (p - gh
and the tangent plhqe of the cone along this gencrator has the
equation N
w’c'%(g}— Y+ b -y et (p — @1 =0 ...(A)
But,, if\virtue of = (bc)? cos A, and 2u = - £+ (be)t, we have
u=(Be)a'cos? I\ ; and, thence, hy 7= (uz}w)é wl, ete, we may
supposeé the plane ¢ = 0 to be that given by
\ 3 cosducosdy 3y cosdvcosin peosgrcosdpu PR
NV W+yb cos 1 sty

There is ambiguity here in the sign of #,; we can however suppose
that the plane
xat cos (s— 1) + yb* cos (s — )+ zct cos (s — v) — 4, =0 ..{D),

above taken from among the tangent plancs of the sections a, &, ¥
is cho_sen to have the same sign for 4, Then the planes, (I), (H),
mect in a line which lies in the plane
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s,y costpcosv
@i [cm (s —NA) cos TN J

cos § A cos %—p,:| -0-

3 o
+ ...+ =z ]:cos(s ¥) cos v

this, however, is the same, as we easily see, as the tangent plane{A),
found ahove, of the cone which joins O to the section of the quadric
by the plane (I). As the line of intersection of the planes (I}, (H)
is thus a tangent line of this cone, and is, therefore, a tangent line
of the section of the quadric by the plane (I), it is a tangent line,

of the quadric ; and, as the plane (H) contains this line, the sechion)

of the quadric by the plane {H) has this line for a tangent. \The
sections of the quadric by the planes (I) and (H) thus touch one
another; or the plaune (I), beside touching the scctiofs o, B85 s
touches also the section, 8, by the plane (H). Thisgection o is one
of the Hart sections to be associated with a, 8, WFor a definite
planc (H) we have four possible planes (I), obtainable, namely, by
the changes of A, u, v respectively into ww@gbmmﬁaﬂymngh
the four scetions a, 3, ry, 8. O

In all there are cight possibilities for the”plane (II). There are
four in which, in place of a?, 2%, ¢ty ‘s v, we have: (1), these;
@), —al, bt &, A, w4+ g, -rr+1g,,"respectivcly; (8), ¥, — b}, &3,
T+X, 4, T+ v, Tespectively ; andi(4), at, b, "y Ry gy v
Then there are four others obtainable from these by changing thesigns
of all of a?, b*, ct. "Thus, gi?cn three plane sections of a quadrie, it
is possible, in eight wags,"to add to thesc another section, by a
plane not passing through the eommon point of the three given
planes, so that the-gggregate four sections shall_ have fqur common
tangent planes. /OF this result another proof is contained 1n_the
work given boldwto shew that the conditions we have here verified
to be suffteiént,”are also necessary. .

Ez. 1, \Make an explicit table of the equations of the eight
plancs ¢E), and, in each case, of the four planes touching the
sections'determined by these. ,
{E¥' 2. The planes ABC, A’B'CY, where 4, ..., €’ are as above,
may be taken to be

(t—at) 2+ (m—0t)y+(n—ch)z=1=0,
and (3+a‘!5)a¢+(m+b%)y+(n+c%)z—t=0, '
respectively. The line of intersection of these planes is the inter-

section of the polar plane £, =0 with the plane atw + b%y + c*_z =0.
On the section of the quadric by the plane(I) we have two triads of
points: (1), the points of contact of this section with =0, =0,
z=0; if the points of the section be given, as above, in terms of &

Q!
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parameter @, by the fact that (a¥pa)d, ( hé’g_-y){’, (o)t are in the
* ratios of ~ 6, 61, 1, then these points of contact are given hy
6=0,1,m, respectively ; (2), the point of contact of the section (i
with the plane £=0, taken with the two peints in which the
section (I) is met by the above plane atx + r’ﬂl’y +ctz=0. The
first point of this triad (2) is given, we have seen, by the value
=plg=rir{p—-¢ of the parameter ¢:; the pasuncters for.i@e
other two points, in which the section (I) 15 met by the plandiwe
have nametjj are the roots of the equation O\

PR+ -1+ =0, O

Henee it is casily seen that the points of the first griad are apolar
with the points of the second triad, in the sense exphpined in Vol. m,
p- 114, Tor the condition that 8, 6,, &, sholld"be apolar with
0,1,  is at once seen to be that & = (6, Br— 62){(1 ~ & — ba);
and, when 8,, ¢, arc the roots of the quadrati¢ equation just given,
this leads to 9 = _tpl_gﬂls“ ?“I)gr ql%‘_ g)_ H‘(hﬁée we ma}r S&y : UPOH
the section W,wt%ﬁcﬁmgr% 1 ttee sections a, 8, v, the point of
contact with the Hart section (H) ig\the apolar complement, of the
two points in which (1) is met by the plane atat béy ~§—c§z=‘0,
with reference to the three points'of contact of (I) with &, 8, v. The
plane ata + ete. = 0 is the harthonic conjugate of the point 0, in
which the plancs a, 3, v medt, with respect to the planes 4BC and
A'B'C’ ; it will receiveBetter definition below (Ex. 3).

Ez. 3. As beforg{denote by § the point of intersection of the
lines 4L, BM, CN and by S the point of intersection of the lines
AL, B'M’, ', Also, denote by o, ¢ the respective polar planes
of § and 8", Burther, denote the planes ABC, A/B’C’ by u, i, re-
spectively, and“the plare of the section (I1) by & let G, @" and H
be the polés of the planes s, # and =, respectively. As we bave
seen,’wg equations of the planes o, i and =r are, T‘QSPECti"el}’ *

‘}.‘\(E—aﬁ)x—k... +t=0, (I—a¥)o+...—t=0, £=0.
N;I{(‘:an be shewn -

Q)

) (a), that the planes g, &’ meet in a line Iying on the polzijl'
Flane of O; the plane, aty 4 b‘l{y tetr= 0, which joins O rto this
ine, contains also the line of infersection of the plancs ¢, o’

(b), that the two quadric cones which contain the sections hy the
planes u and & have their vertices at 8, and at the point where OS
meets the plane o. The former is clear because AL, BM, CN mect
in 8. For the latter, since 0, the point of intersection of 44', BB )
CC', is the vertex of one of the cones containing the sections g, 4’
and &' is the vertex of ane of the cones containing the scctions
#'s @, therefore the Yne 08’ contains the vertex of one of the cones
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containing the scctions u, @, by what we have scen above; and 08’
does not contain 8. The vertex of the second cone containing p
and @ is therefore on 08, That this second vertex lies on the
polar plane, o, of the vertex, 5, of the former cone, is a general
property. And the planes p, o meet on o, which is harmonieally
separated from § by thesc two planes. :

{c), that ihe lines OS, 08" lie in & plane containing the lincs
0C, OH, and are harmonic conjugates in rcgard to these. This
follows from (&), because the vertices of the two cones containing O\
the sections u, w lie on the line GII, and arc harmonically con-
jugate in regard to G and H. To point out the meaning ofy this
result, consider the quadric as a sphere of which O is the ¢entrc;
then the Hart circle of a spherical triangle, ABC, meets BC in
L.L:CAdin M, M ; AB in N, N', such that the apegs AL, BM,

CN meet in a point S, and the arcs 4L, BM', CN'Gifa point &,
these points, S and 8, being the centres of similitide of the circle,
(), cireumseribed to 4BC, and the Hart circle (@ ).

It may also be remarked that, from any po ikt ferin given
points G, X, ¥, Z, we can define a plane thais: Let OP, XP, YP,
ZP meet the plancs XYZ, 0YZ, 028y 0XY, respectively, in
0, X', Y, 2. The planes O'Y'Z’, O%'X', 0'X'Y’, X'Y'Z', by
their interseclions with the planesnOYZ, OZX, O0XY, XYZ, re-
spectively, determine four Iines.~These four lines lie in the plane

to be defined. If, relatively talthe points 0, X, ¥, Z the point P

be (£, 7, &, 7), the planeis g& +yn + ol + i = 0. This being

understood, it is clear that*the point S, and its polar plane o in
regmd 1o the guadri ,Qﬁ'e Ain this relation with respect to the points
0,X,¥,Z, dctermi‘u%ﬂ by the planes of the three original sections

&, 3, v and of the\Hart section. It is easy to see that in gener:al

there are eighit poliits whose polar planes, in regard to 8 given quadric,

are also derivable by this construction, from four given points.

Er. 4, /Fheére arc, we have said, eight sections, =, each touched
b:y fourafithe common tangent plancs of the sections ¢, 3 7. Thlesc
cight,déetions fall into four pairs, the planes of a pair intersecting
on-the polar plane of O (where the planes of & 5, ¥ meet), being

hartonic conjugates in regard to this plane and 0. For the pair
associated as above with the two planes ABC, A'B'C’ the lines OS,

08’ are the same. Auvother pair is associated with the planes

{13'0', A'BC; a third pair with the planes BC'A', B'(4, and a

fourth pair with the planes CA'B’, ('4B. _ .

And it way be noticed that the scctions of the quadric by the
planes ABC, ABC’, BC'A', CA'B’ are sl touched by four planes,
as follows from the fact that the Lines A4, BB, CC’ are concurrent.
Sci also the sections of the quadric by the planes A'BC, ABC,
B'Cd, ("ARB ave all touched by four planes.
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Egz. 5. Given two points, 4, B, of a quadric, and a point 0, we
can define, for the moment, as mid-axis of 4B in respect to O, the
line joining O to the pole, in regard to the section O4B, of the
line 4B. Then, given three poiuts, 4, B, C, of the quadric, let
d, e, f denote the mid-axes, in respect to O, respectively of BC, €4
and 4B. Let p be the line of intersection of the planes ¢f and
BOC ; similarly let ¢ and » be the lines (fd, COA), (de, AOB),
respectively. It can be shewn that the lines p, ¢, 7 lie in a I%ane
mecting the plane ABC on the polar plane of 0.

If the quadric be (a, &, ¢, f, g, Alz, ¥, 2P =17 where O is
(0, 0, 0, 1), and 4, B, C are, respectively, (1, 0, 0, aé),.(@;'l; 0, i),
(0, 0, 1, ¢¥), the mid-axis, d, of BC in respeet to O i ?ﬂ)%:zc%, the
plane ¢f is — xat + bt + zct = 0, and the plane pir 15

zat +3;b% + zct = 0. AN

It is easy to shew, further, that the plancs (d, 04), (e OR),
(fs OC) mpgtinardintralby gy ay callihe centroid avis of ABC
in respect to O. L <

Consider, next, the plane joinix‘lg,bA to the pole of the plane
BOC, and the two other similar plahes. The planes are easily seen
to meet in a line, which we miay’call the altitude aris of ABC
respect to 0. N

It can then be proved that the line OH joining O to the pole, H,
of the Hart section, whose equation has been writtewn

wN\VwEmy +nz—1 =0,
lies in the plan&6f*the centroid axis and the altitude axis.

Ez. 6. Nox_cousider the particular case of the preceding “:'Ol'k
which arisesyw¥en the point O, in which the planes of the sections
a, 3, v miegt; is on the quadric, so that the points 4', B, ¢’ are
also a0 Then it is easily seen thal also the planc ', the polar
plané of §", aud one of the plancs of the harmonically conjflg”'te
qL&ic, is the tangent plane of the original quadric at the point 0.

Jclitte intersections of this plane with the lines YZ, ZX, X}T of the
*\ plane ¢ =0, which werc previously denoted by Ly, M, N/, sre the

harmonie conjugates of L', M, N', respectively, in regard to Y and
Z,Z and X, X and ¥, the points L/, M’, N7 being points of the
Hart section of the guadrie, lying respectively in ¥'Z, zZX ‘zmd XY.
Hence we have the following result: Consider three sections Of_f'-
quadric, «, 8 and v, which interseet in a point O of the quftdﬂc-
Let the lines of intersection of the pairs of planes of By, of oy @
and of a, 3, he respectively OX, OY, OZ. In the plane YOZ tﬂ-k?‘
the line, {, which is the fourth harmonic, in regard to oY, 0Z, 0
the line in which the tangent plane of the quadric at O meets the
plane YOZ. Let the line { cut the sectiou ¢ again in L”. Construck,
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similarly, the points M and N” on the sections 8 and v, respeetively.
Let = be the section of the quadrie by the plane LM'N'. It can
be shewn that there are four plane sections of the quadrie which
touch the sections @, 8, v. These all touch the section .

The point of contact with o, of any onc of these four tangent
sections, say ¢, can be constructed thus: Take, upon i, its three
points of contact with the sections a, B, ; take also the two
intersections of 4 with the tangent plane of the quadric at 8. Then
the point of contact of ¢ with @ is the apolar complement of these
two interscctions in respect to the three former points of i. A

If we project from O on to an arbitrary plane, the section (@
becomes the Feucrbach circle of a triangle. This touches{the
inscribed cirele of the triangle (as also the escribed circles) ajajpoint
determined, as above, by the points of contact of thesansctibed
cirdle with the sides of the triangle and the two Absolate points
on the inscribed cirele. (See Vol. 11, p. 114, This paxhicular case of
the general theorem of the text had been foun uhknown to the
writer, by F. Morley, dmerican Budl. 1, 1805 dppadliBediddorg.in

Auother construction for the plane of th\ section @ may
referred to. We have mentioned ahove\(p. 77) a construction
for the plane whose cquation is pEN Ry BT T = 0, from
the point (£, m, & 7); let this plane be'ealled the polar of (£, & T)
in regard to the tetrad consisting ¢fithe interscctions of the planes
2=0,y=0, 2=0, £=0. It can. We shewn that if three lines be
drawn through a given poinfNO, of a quadric, there exist three
anique points, say' P, Q,‘“}@ one upon each of the lines drawn
through 0, of which @very two are conjugate in regard to the
quadric. Let the thiee imes be the intersections, in pairs, of the
planes of the sectionswd, 8, . Let S be the pole of the plane PRE
1n regard to the guadric. Then the plane is the polar of O in
regard to the ¥étfad P, @, B, 5.

If the poii}“0, relatively to the tetrad P, Q. R, S, be of co-
ordinates lv()ﬁ\,'l, 1, 1), the equation of the quadric referred to this
tetrad_wlay be supposed to be aa?-+ by’ + o2 - (atb+cyrr=0 If
now e tefer the quadric to the four points consisting of O and the
tirée“points in which OP, 0@, OR are met by the polar of O in
regdrd to P, Q, B, S, we put X=a—¢ Y=y—t Z=2-10
T'=x +y+ 5+ 4 the equation is found to take the form

aX2 4 BV 4 i — (D4 ) YZ—(c+ @) ZX ~ (@ +B) XY

+(aX +3Y +¢H)T=0,
from which it can be verified that 7' =0 is the plane of the section
= Ell‘ising from the sections X =0, ¥ = 0,Z= 0. The harmomcally
conjugate quadric, in regard to the last tetrad, is
(aX +bY+cZ)(X+Y+Z—T)=0,

N\
\
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consisting of the tangent plane at O and the planc £=0, or
PRE.

Ex. 7. If the scetions o, 8, v be in the planes =0, =0, =0,
mecting on the quadric, the planc of the Hart section = being £ =0,
the equation of the quadric is of the form

gt +f 4 e —(b+ o)yz— (c+aypr—(a+b) ey + 2z +y + ) t=0,
the harmonieally conjugate quadric being the aggregate of the
plencs @ +y+2=0, ga + by + cz— U =0. ’

The four plancs touching the -sections by a=0, y=0,x%0,
t =0 are of the form N\

e\
m(l—m){l»n)+y(m-—n)(m-—3)+z(n—i)(n—?@—P’i:(),
where —-P=phte, —2m=cHa, —0132:,“5—;-?3.'

N
Further, if we introduce @, and the cunrdinsffg}s X, Y, Z, by the
definitions \M
v BbpaabEd Y org = 0,  An¥ 0, X =0,
y=Y +bax, K;Z + ¢ aw,
the quadric has the equation ‘

0 X5+ BV 5 o~ (b ¢) VB + an) ZX — (a,+ b) XY
+2X+ Y +Z)E=0,

which Is of the same fopm as the original. For the original equation
the points 4, L on 0X3.¥Z, of our general theory, are (™, 0, 0,—%)
and (0, b, ¢, Q)gand the lincs AL, BM, CN meet in the point
(a3, b7, €3, 4 )0 S, whose polar in regard to the quadric 1s the
plane ar+byQpx—2=0. But the transformation here given
shews thaththie’ Hart section, in the plane =0, belongs equally to
three othg sets of three scetious of the quadl'ic, onc of these sets
being Ahose in the planes X =0, ¥ =0, Z= 0.

uxr8. The reader is probably aware that in the nomenclature
usdal' in metrical geometry, the radius of the Feuerbach circle of a

,#niad of points in a plane is one-half that of the circle containing

o

these points. This reswlt has also been generalised to the radius of

the Hart citcle arising for a triad of points of a sphere joined 13}
arcs of great civeles (Salmon, Geometry of three dimensions, 18?«35
p. 232). We now prove a theorem for sections of a quadric which
includes these resuﬁs. .

For this purpose we first define the radins of any scclion of &
quadric, in regard to any point not lying on the quadric. It s easy
to prove for a conic, that if two lines intersect in a point O, not o1
the conic, and H be one of the points in which one of these lines
meeis the conic, and the tangent of the conic at H meet the other
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line in P, then the angle between the lines, measured in regard to
the conic, say p, is related to. the interval OF, also measured in
regard to the conic, say 3, by the equation sinpsiné=+ 1, or its
equivalent, tan p =+ isccd (cf. Vol. 1, p. 210, Ex. 6). Now, let O
be any point not on the quadric, let @ be any seetion of the quadric
lying in & planc whose pole is P, and let H be any point of the
section w. By considering the conic in which the plane POH meets
the conic, we see lhat if p is the angle between the lines OP, OH,
measured in regard to this conie, and 3 is the interval OP, measured
in regard to the quadric, then tanp=+isecd; thus p is indé),
pendent of the position of I on the section @ It is this p which
is here ealled the radivs of the scction @, in regard to the point 0.
Evidently the relation between 0 and P is symmetrical. <

Now let & and p be any two sections of the quadricy Whose radii,
as thus detined, ave, respectively, p and R ; let the plaftey joining the
linc of interscction, /, of the planes @ and g, toxthe pomt O, be
called @ ; and the plane joining 7 to the vertexoleither one of the
concs containing the sections @, u be c&u%\ﬁtﬂmﬁ% : i‘é?h‘)f
these planes be written respectively (@) =0 (k) =0, (@) =0, (o) = 0,

it is easy to shew that, with a proper cohstant, ¢, we have
(cy=(u) +e(z), (w)=(pitan R +c(z)tanp.

This ean be applied to the case when, as before, = is the Hart
section of three scctions, a, 8, vo0f the quadric, whose planes meet
in a point G not lying on #he quadrie. For p we take the section
by the planc 4BC. 'The yértex of one of the cones containing the
sections u, o= is the p\' S, whose polar plane in regard to the
quadric 1s the plang o % it has been seen (Ex. 3) that the vertex of
the other cone confaining the sections s, = is on the plane o (and
on 08%), Furtherytve have seen that (u), (@) (¢), () are, respec-
tively, ON
(-a)eu F7=0, ¢=0, (l-ad)z+.. . +i=0, (I—ad)z+..=0;
whenq&.ﬁrﬁ = () + 2 (@), (0)={(p)+ (=) Comparing this with the
equabions above we have ¢=+ %, ctanp=tan R. Hence we have

. Wézesult tan R = + 2 tan p, which we desired to obtain.

Another proof may be obtained by shewing that Atan*B=U,

Atanip =V, where U, V are given respectively (cf. p. 78) by

U = Aa+ Bb + Ce + 9F (bo)t + 26 (ca)t +2H (ab) - &,

V = AP+ Bm? + Cr* + 2Fmn + 2Gul + 2Him — 4,
where A= be—f?, F=gh —af, etc, as before, and & is the dis-
crimi‘nant ahe+ fgh — af?— bg* — ck*. . In virtue of 2mn =+ (bo)b,
etc, it can be shewn that

4V = U =2[(be)} - f1[(ca)t - g1 [(ab)t — A}

E. 6.1V, [
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Ez. 9. By projection of sections of a quadric, prove that, if three
circles in a plane intersect in pairs respectively in 4, 4°; B, B'and -
C, C’, then the circles ABC, A'B'C', AB'C’, A4 BC, which have a
common orthogonal circle and are, in pairs, inverses of one another,
are all touched by four other circles which have a connmon ortho-
gonal circle; also that the circles 4ABC, AB'C’, RC' .1, CA'B’ are
all touched by four other circles, (A. Larmor, Proc. Lond. Math.
Soc., xxii, 1892, p. 149.) \

In what has preceded we have shewn that eight scctions of the
quadric exist which touch three given plane scctions of,geheral
position, &, 8, v. We have then shewn that there are eight ways in
which we can associate with these sections a, 3, 7 a section; =, such
that four of the tangent sections of a, 3, v also toudh @—account
being now taken only of the cases in which the planes of a, B, o, &
do not meet in a point. We have shewn that -@&iflicient condition
for this is that another quadrie, which we {iave called the har-
monically conjugate quadric, should breakp-into two planes.

We consi&ﬁf“h@h#’%@‘i%ﬂv%‘iﬁe“ﬂuestﬂm whether this sufficient
condition is also mecessary, by examining the most general case ip
. which the sections of the original quadwic by the planes x =0,y =0,

%=0, =0 are all touched by fouriother plancs.

The quadric being, in the firstiinstance, veferred to the planes of
three sections a, 8, 4 and theSpolar plane of their point of inter-
section, let its equation bes(a,, b:, o1y f, g1y i, 1, s P =113 let
a fourth plane be ¢ =0, here t =4, — lz, — my, —nz, 3 we shall sup-
pose that no one of Iy, n is zero, and put @ =lx,, y = miyp, 2= R
The equation of the\’q}xadric then takes a form, ¢ (x, y, 5, £)=0,1n
which ¢ =(a,b, f‘}’@a’.f; &h, wﬁ'rsf/) #, ¢, where u = v=w=d=L.
The condition that two Plane sections of the guadric should touch
one anothep.is.that, of the cones enveloping the quadric along these
sections, thé vertex of cither should lie on the other. But the cone
enveloQﬁg the quadric along the section by £ =0 has the equation
D¢ (w3, 5, t)=Af, where A is the symmetrical discriminantal
determinant of ¢, of four rows and columns, and D is the minor

~of.d therein; and the enveloping cones for the sections by =0,
¥ =0, x=0 have similar equations. The condition that the four
scetions of the quadric by the planes £ =0, y = 0, =0, t = 0 should
have a common tangent plane is that the four envcloping cones
should have a point in common ; this point, which will he the pole
of the common tangent plane, will thus necessarily be onc of the
eight points

ted =t yB =1 aC Y =4D ¥,

and the condition is that, with properly chosen signs, we should have

(x4 +BY 40 DYy=A
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If the four scctions by #=0, y=0, 2=0, =0 arc to have four
common tangent, planes, this last equation must he satisfied for
each of four scts of signs of the radicals. These four conditions
must be satisfied in virtue of proper choice of the three quantities,
I, m, n, without limitation of the values of the original coefficients
&y Dy Gy f1s @15 By, We suppose that the sections of the quadric
by =0,y =10, z=0,#=0 do not degenerate, in either case, into a
pair of lines ; and so we exclude the possibilities
A4=0,B=0,C=0,D=0,

By taking a particular case we can infer that if the equa{t,l\an
$(+ 4}, ...)= A is satisfied by four sets of signs of 4%, B¥{C%, D},
then three of these sets must be derivable from one of)them by
change in the signs of two of the three A% B:, GRS We take
£i=0, &, =0, b =0, leading to f=1, g=1, A=1.Then it is easy
to verify that b

A=(a+1)4+(G+1) B+ 6k mtary org in
and, if we put E, #, {, 7 respectively for A%, B, €%, and — DA, the
equation ¢ (+ A%, ...) = A becomes ' »)

(E+n+l—TR=2(% P+ -1
We shew that if this equation, ;;Znéi'threc others chosen from

(HELnt gV =2(E+r+ =),
are all satisfied by thesame set of values for & 9, &, 7, then the
three others are thosg i which the linear functions on the left side
are E—p—¥¢—7, W EFhqg—t—7, —E—n+§{—7. The equation
(£ Fdn+ §—Tf=@(E + 77 + £~ %) represents, if £ u, £, 7 be
regarded as cobrllinates, the enveloping cone drawn to the quadric
E,’+7z*+§*—~>e"=0 from the point (11, i—?, +1, 1), there are
eight sueh{@fes ; it is easy to find all the interscctions of every
three of“these cones; then it appears that, exeluding intetsections
on =0} =0, £ =0, r=0, therc are only two sets of four cones
‘ﬁfgi&i'}mve four common points, the vertices of one of these seis

{Ahg the points (1, ~1, —1, 1), (=1, 1, -1, 1), (-1, -1, 1, 1),

M, 1, 1, 1), the vertices of the other set being (-1, 1, 1, 1),
(1,-1,1,1) (1,1, -1,1), (1, 1,1, —1). This proves the state-
ment made, _ .

This result being assumed, the equation ¢ {+ 4%, )= A, which,
writing (BC)t for BE. (3, ete., is

ad + DB 4 ¢C +dD + 2[f (BO) +u (4D)H

+2{ g (CAR + 0 (BOR]+ 2[A (4B} + w(CDF] -8 =0
6—2
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leads, by combination of the forms it takes when the signs of two
of 4%, BY, C¥ are changed, to the four equations
ad+5B+cC+dD—-A=0, f(BC} +u(dD} =0,
gCA+o(BDY =0,  h(aBY 1w (CDY=0.
The last three of these cquations vequire that 4, B, €, D should be
in the ratios of fuw, g, v, fgh, to one another, that is the
ratios of the values which 4, B, C, D would have if, in the detef™
minant A, we had 2 =0, b=0, ¢=0, d=0. Conversely, if proper
signs be given to 4%, B2, €% D} the last three of these i;({li}kt}ons
are a consequence of the equations 4 = 4 fow, B= o i, €2 o huy,
D =g fgh. We require to shew that if, beside these, wé also have
ad + 0B +cC+dD— A =0, then the ]1:11‘11101‘11'}'5}11}! conjugate
quadrie, whose equation is obtained from that_of{Ke original by
the change of the signs of £, g, &, u, v, w, breaks Dp into two planes.
It will be found that this involves o = 4. O _
TO Cal'l‘y &h}@%é&hﬁb Pdg@bﬁg ﬁ-ﬂppgsa :{f?:'v =1 =d= 1, Whlch
s quite general; and, for brevity, put
E‘: 1 — ity ‘q‘:l —-6, §= 1 —e, p: ]_;j_ﬁ,f‘:a g — ]_ _é;-ﬂ, ?-:-] _-}3,‘—"
and also " \Y
a=f+g+h RB=gh + U S, y=f3h, e=ua—7,
A=¢ (f-f-‘.f‘——l), M ;j:};(g +o7, p=c¢ (h + }3.—1:}.
Then it is found that 4@ p¢— (1 — F¥%, cte,, and the equation
ad + 8B+ cC+ dD —&50 is the same as
- 3’5?)?\&{\22«;;‘— Ipk—~ 2% f2+25gh=0.
Hence, the fourfq:uations consisting of this and the three
P, difve=..= D/ fgh,
are found, intreducing a quantity 4, to be the same as the aggregate
O <QLef ™ — = Leg™ — p— Eneh - v = £yl + Spf —
O 2e2pE =0 (a—3y) + 6 — 2.
'lthgsfe' ‘lead to
N EFN @) (04 v) =Ty [0 (at o) + 2e + 2:5]
\it is necessary to solve this equation for #, and then, putting
p =30 (@ +v) + 2+ 23],
together with
E=pelf(0+N), m=pe/g(B+un) = pefh(f+0),
to test whether the equation
IpE=0—p+4
is satisfied. If this proves to be so, the original equations can be
satistied.
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In fact, the three roots of the cubic equation are §=2, 0=—2,
f=eyt (1 — B); these lead, respectively, to the three values for £,
E=(1+20+RA+N E=0-g0--HQA -1
E=dpyf (e —2)
with corresponding values of 7 and . The first and second of these
roots lead to verification of the equation SpE=460— p + 4, but the
second leads to 4 =0, B=0, C=0, which we exclurfe. The third
root, leads to verification of the required equation only if f; g5 & be
such as to satisfy

Sah(1=f9(e—2gP(e—20F . A
=16y + e {a +vy)— é-e,@][ﬁry-!— e (a—B8y) - }eBliN
this however is not genetally truc, as we roay see, for e&aﬁpﬂe, by
taking f=1,2=2, h=3, which lead to a negative valug for the
left side, and a positive value for the right side. "‘\

There remains thus only the possibility of the Brst root, &= 2e.
We compnute then the harmonically conj uizatedpddityang Snd that
{;E. consists of the two planes expressed, 1f m ={1% A+ +2),

‘r * N \ v }

mle(D+ )t +y 1+ +201 -l-.gh)fi]z ={xt+y+z—1t0
Further, retaining u =v=w=4d =1\ the four planes touching the
sections of the quadric by z =0,4=0, =10, §=0, are the polars
of the points (f 1 of, B, - fret A%), in which all possible signs
are taken for f1 g*¥, k% "Phis completes the proof that the con-
ditions found sumcienm\%,j:‘he early part of this chapter are also
necessary.

Fa. 1. Tn terms(of four quantities a, &, ¢, d let f'=bc — ad,
g=ca—bd, h =abcd, p="be+ ad, g =ca + bd, r = ab + ed ; also
13\.teiia+b+c+d, Q=a-btc+d,

\,\\:R'= a+b—-c+d, S=a+h+te—4d
Prove tliat, if the quadric have the equation

WOpigrat+ g rpyp 4+ rpg R+ Qfys+ gan + hay =45
shete #, = 0 is the polar plane of (0, 0, 0, 1), then one Hart section
for the three sections x=0, =0, z=0, or @, 3, v, 15 glven by
aw + by + ¢z — £, = 0 ; also, that the four lanes touching &, 3, v and
this Hart section are the polars of the points (—1, 1, 1, P),
(1,-1,1, §),(1,1,—1,B), 1,1,1,8). Provealso that the change
of a, b, ¢, d, respectively, into —d, ¢ b, —a, leaves the equation of
the quadrie unaltered. This change consists of the interchange of &

and ¢, taken with ‘the interchange, and simultapeous change of sign,
of a and d, Similarly, the equation of the quadric is unaltered by

2\,
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the change of &, b, ¢, d respectively into ¢, —d, #, —&: or into
b, @, —d, —c. The equation is also unaltered by lhe change of
sign of #,, Hence obtain all the eight ITart sections, and, in cach
case, the four planes touching this and the scetions a, 8,v. The
form of the equation of the quadric here taken was suggested by
Dr G. T. Bennett,

Ez. 2. If the quadric be fiyz + gaw + hay + ¢ (ur + oy + wz) =0,
the sections by 2=0,4% =0, 2 =0, t = 0 are touched by the plane
Fe+ m7y +n"s+ p~ =0, where

N

I=¢ (.ﬁ"’)%a Mm=¢ (g""-ﬁ)&, =gy (}*’-u‘)éa R )
in which e,=+ 1, e,=4 1, €, = ,6,, and p=Imnjworo, provided that
B mt ot = 0. (Cf. Vol. i1, p. 145.) «

Ez. 3. For the quadric (a, b, ¢, 4, f, g, I, u, 04 @G, y, 5,6 =0,
the pole of a plane touching the three sections bylw=0,7=0,2=0,
is of coordinates

wthy BhrOAbrary (s gk G — el
where M is such that A
a7 [(wd ¥4 vBY + wCly — M= (a, by ¢, £, 2, RY 4%, BY, Chy— A,

Ez. 4. As the condition that two plane sections of a quadric
should touch ome another isSymmetrical, there are symmetrical
relations between the planes®of Tour sections which are sll touched
by four other planes, au{l these latter planes. It is of interest then
to construet the relations of the two teirads of planes. The follow-
ing result, in this regard, is due to Study, Math. dnnal., sz, 1897,
Pp- 497 T, A

As before, 1¢t the planes joining the points 0, X, ¥, Z mect the
quadric in s€ctions all touched by four other planes ; let the points
of the qu‘agh'fc on the lines OX, OY, 0Z, YZ, ZX, XY be, respec-
tivelyNd,’d’; B,B'; C,C’"; L, L’; M, M'; N, N', the notation
being such that the lines 4L, BM, CN mect in a point, §, and
AELSB'M’, C'N’ in a point, 8. Let the planes BMNC, CNLA4,

WAEMB, BM'N'C', C'N' L4, AL'M'B’ be denoted, respectively,
S by 6, ¢, ¥, &, @', ¥ let the points in which the line (&, ";H
meets the quadric be denoted by P, @, thosc in which the line
(¢'s ) meets the quadric being denoted by Py, Q.: a similar
notation being used for the other cases, name v Pq, @y 00 the} line
(¥ 8_’)’ Py, @z on (¥, 8), Py, Q. on (8, ¢'), Puy Qa on (@, ¢)
Consider now four planes touching the sections by the planes
XYZ, OYZ, etc.; take the intersections in threes of these four
planes, and the polar planes of these four points of intersection;
let these polar pﬁmes be &, 7, &, 7, so that these intersect in threes
in the poles of the four tangent planes,
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Then the twelve points Py, @, Ky descrihed above are in fact
the intersections of the quadrie with the lines of intersection of the
pairs of the planes £, #, §, 7. With a proper choice of notation
the line (», ¢) is the samc as the line (£, Py), and the line (£, )
the same as the line (@, @), and s0 on; the sets of six of these
points lying on the planes being, respectively, given by

E(QﬂBj Qs‘zs P, P13a P1'29 le); n (an Qm P]gs Pm, PE‘.” Pse)a
C(Qm @y Py, Py, Py, Py (Q&sa s, G, Qs Qe Qﬂ)‘
As we have not distingnished geometrically between the points
Py, @, of the line (¢, ¢), ete., each pair of opposite lines of Inteér
section of the planes £, 4, &, 7 is capable of two determinatiobs
there are therefore eight possibilitics for this set of fom:;planes,
as we have seen, )

These statements can be verified easily. We cangsdppose the
quadrie to have the cquation )

2 (1 —a®) + o (1 — 0 + 2 (L~ 2 + Ly (be — 1) %2z (ca — 1)

+ 9y (ab — 1) PR SPjRMlyror argjn

the harmonically conjugate quadric being\ihe!

_ (@+y+z—tP—(ax+bpPcx)y=0.
Then, with f=86c—1,g=ca—1, f»t;m’) =1, if we put x1=.t§7('_§= )
h=yg R T 4 =1 fgh)”t, \the poles of four planes which
tonch the sections by w=0, =W, x=0, =0, have, by what we
have seen, for coordinates 2 Wiy Z1s bis respectively, (-1, 1, 1, 1)
(1, ~ 1,1, 1)3 (1,1,-1, 12;‘:\19 1,1, =1} thus the planes &, L
have, respectively, the @quations

—T+ptan+ha0, a—ptun+h=0, 2+ — 2+t =0
and a, + htas (1 = 0. The points 4, A, L, I’ are given, respec-
tively, by O

Y=0=mu(l —a)+t=0; y=0=x 21 +a)+1=0;
z=0 ,y(l—b)':z{l—c);x=0=t,3(1+3’)=3(1+3)’
and Sp.fo.l’i; and the plane BMNC, or 8, is given by

~\. ww(l—a)+y(l—b)+z(1—-—c)+t=01
ahdso on. Now put

pu=— (gt —Myafd, o= (gteihaif
with similar notations; then we can verify that. the coordn}ates,
(21, 3, 2, £), of the twelve points Py, etc., are given, respectively,
by the scheme
P% (Pﬂ' 1,1, — Pags st {0'93; 1, -1, o) Pss(—st’ 1,1 P:?s}r o {oa
Pyl pna L —pgls Wsn -1, o, Liomh Pl —pa L o) Ol oma= 1 omh
Pu(l, 1, pygy = prsds @il =1, oy, ozh Py {3, 1, = prgs Prals Qui~L 1) 033, 033):

-1,1, sh
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From these the statements made will follow, Tt ean be verified
also that the pole of the plane ¢ lies on the line ¢+, ete.

Ex. 5. With the equation of the quadric taken in Ex. 4, prove
that the harmonically conjugate quadrie of the given one, in regard
to the four planes touching the sectionshy o =0, y=0, =0,¢=0,
consists of the two planes which are the polars, in regard to the
original quadric, of the points whose coordinates (@, , 2, ¢) are

Slaim+a)+1), g{b(m+ oy +1], hleim+ar+ 1], —fgh{\ -
where m=1}(abe—~a—b—2), a?=m*— 1. 'The discrimina .t;\A, of
the equation of the original quadric is 1642 A\

Ex. 6. As hefore, let the sections of a quadric by foar planes
0YZ, OZX, 0XY, XYZ be touched by four planegsiLet the in-
tervals OX, OY, OZ, measured in regard to,#£he quadrie, be
denoted by ia, 43, iy, and the similar intervads¥'Z, ZX, XY be
denoted by ida’, ¢8, iy’ (cf. Vol. 1, pp. 179, 208) Similarly, let the
angular intervals of ﬂl‘ ]pairs of planes meeling, respectively, in
0X, 0Y, 0Z} Wﬂgﬁ?ﬁ% By (45, ]8?3 h, (€%and those between the
plane XYZ and the planes 0Y Z, OZX’,’bX Y, respectively, by (4'),
(B, (C’). Taking e such that O

2 tanh e = tanh a tanh 8 tanh§*- tanh « — tanh 8 — tanh,

prove that, with suitable l‘ega}:dlto the ambiguities involved in the
definitions of these intervals,y®
a'=£7r+,8—f“y,'\’,8'=i-7r+ry—a, v =ir+ua-—f,
tan {4) = sinh a/c q}Kfs 4 ), tan (4= sinh (8 — y)/cosh (e + 8 + )
and 50 on. Thegelead to
(@) =BY-(C), (B)=(C)— (), (C)=(4)-(B).

Prove that4f three circles in a plane, a, 8, «, intersect in pairs at
angles (#4),(B), (C), and = be the circle which intersects them at
angl};kB) ~(C), (CY—(4), (4)—(B), respectively, then a cirele
canDe drawn to touch a, B, v, w. (Lachlans Modern Geomstry,
1898, p. 250.)

\ )



CHAPTER III

THE PLANE QUARTIC CURVE WITH TWO
DOUBLE POINTS

In this chapter we obtain some properties of a plane curve by,
projectionn of a curve which lies in space of three dimensions
The plane curve is ome which meets an arbitrary line in four
points, and has two double points, or points where the,.furve
crosses itself. The curve in space is the curve of intersection ‘of two
quadric surfaces. ‘The matter is dealt with in more detdil then is
required by its difliculty, because the theory is a mbodel for the
subsequent theory of the Cyclide, a quartic sueface in three
dimensions, regarded as the projection of the imbersection of two
quadrics of fourfold space. (Chap. vi, helow. b > i v orein

The generation of the curve. The féﬁ#pﬂncﬁpaﬁ' oircles.
Consider two quadrics which have a common},‘elf—polar tetrad. "They
intersect in a quartic curve, through whieh there pass four quadric
cones. Let V7 he the vertex of one ofithese cones, and £ be one of
the quadries ; the curve may be dgfined by the intersection of the
cone and the quadrie. Taking, }’Ipdn Q an arbitrary point, U, we
project the curve from U upofrah arbitrary plane, w. As each of
the generators at U, of theigwadric (2, meets the cone of vertex ¥
in two points, we obtait\in @ a quartic curve baving a double
point at each of the pdints, say I and J, in which these generators
meet . Converseldy ally plane quartic curve having double points
at the intersectionsvef the line £ =0 with the two lines # 3y =0
has an equation™of the form

(e :g?):{—\[— (2% + %) z ({z + my + 1)
.X" "4 22 (az® + by + o2 + Yy + Ygur + Rhay) =0,
or sa f.:;‘3 + 7P + (@t +yMeP + 2285 =0, as wc may assune, This
curve 1s the projection, from the point (0, 0, 0, 1), of the intersee-
{ionof the two quadrics xt =a°+ g2, £+ P +85=0.

Now consider a section of the quadric £ by the polar plane of
V,in regard to . We call this a principal scction, and its projec-
tion upon @ a principal circle ; the centre of this circle is the pro-
Jection of ¥ (above, p.7). There are four quadric concs through the
curve on {2 ; there arc thus four principal cireles in the plane = ;
the polar plane of ¥, in regard to (3, passes through the vertices of
the other three cones, the four vertices forming a self-polar tetrad.
Thus (above, p. 8) every principal circle cuts the other three
principal circles at right angles. If ¥y, ¥5, Vs be the vertices of the
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other three cones, the line PV, is the polar line of ¥,V in regard
to (2, and the planes UVY,, UV,V, are conjugate, and are thus
harmonic in regard to the generators at U. Thus the centres of the
four principal circles, in the plane @, are such that the join of any
two of them is at right angles, In vegard to I, J, to the join of the
other two: or, any one of these centres 1s the orthocentre of the
other three,

The curve as an envelope of circles. The director conic,
Next, consider a section of £ by a tangent plane of the core of®
vertex V. It projects into a circle cutting at right angles, the
principal cirele corresponding to . The locus of ihe poles) in
regard to (), of the tangent planes of the cone (¥), is a'eonic, say
v, lying on the polar plane of ¥, this being the polagréciprocal of
the cone {¥), in regard to {3. This conic, z, projeéhs into a cone
in the planc @, say a. The circles, obtained bw projecting the
sections of {) by the tangent planes of the {:011(}:1 W7, Ll]ms ane their
centres on a conj heside cutting at_right angles the corre-
spending priﬁ&%& circle, We Oﬁl%.'jlfncall the €bnic o a director conic.
Every one of the circles, arising fl'()m"t]}(, tangent planes of (7,
has in fact two points of contact with{the quartic carve of the plane
=. For, if H' be an intersection, of the quartic curve on £2, with
the section of by a tangentiahe of (V), then II” isen V), as
being on the quartic curve, and*is therefore at a point where the
tangent plane touches (7} ‘the line of intersection of the tangent
plane of Q st H’ with the tangent plane of (¥) at this point, 1
thus both the tangent{int of the quartic curve and of the section
of Q by the tangent.plane of (V). These two curves thus touch at
this point, and théeurves in @ obtained by the projection of these
equally touch, (The line VH' meets the quadric 2 in & further
point, which{also projects into a point of contact Of. the plane
quartic curve'with the same circle. The total interscch‘uns of fﬁhﬁ
circle with/the plane quartic curve count therefore for cight, being
two gt ‘each point of contact, and two at each of the double
pojﬁti? I, d. .
\\Ex. 1. The facts will perhaps be clearer if we consider the
equations of a econie and a circle, in a plane, say, 1‘0_56[}80131"9_1}1';
a2+ iyp=2, and (@ —h2)+{y — kay =r2% A circle, wit
centre at the point (zecos 8, bsin 8, 1), of the former, which cuts
the latter at right angles, is given by the equation (ef. Vol. 1,
pp- 110, 111)

(x—acos 0.5+ (y—bsind. 2y
=[(h — a cos @) + {k — b sin 8 ~+*] =

or Pcosf+Qsin8 =R, where P=2ax(v— hz), Q=sz@?#kz)’
R=w+y—2 R+ —r).
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This circle then touches the curve expressed by P?+ @ = EF, as
is easy to verify by combining the equations of the circle and curve,
namely at the points where the circle is met by the line given by
Psin @ — Qcos #= 0. The equation of the curve is

[ + g2 — 22 (B2 + K2 = 5 — da* [@® (0 — Bt + 0 (y — k=] = 0,
and the points of contact are given by

iz — hz)=Azcos 8, b{y—kz)=rzsinb,
where \ is either root of the equation -
A (a2 cos?@ + b2 sin? @) + A (oM cos § + b ksin @ —1) +7°=0.
Cassinis oval is obtained when A=%k =0, 72 =0+ 5" AN

Ez. 2. Prove that the four points of contact, with the quartic
curve in @, of any two of the tangent circles which havestheir
centres on the same director conie, lic upon a cirelef slikewise
cutting the associated principal cirele at right angles¢™\

The four director conics are confocal. The\fuartic curve
in the plane @ is thus the envelope of the eire *described, with
centres on the conic o, to cut the cm’res{%‘ﬁ‘ﬂ"‘ El‘ﬁéw A&t
right angles. (More gencrally, it appearedy Vol. 1, p. 200, that a
general quartic curve in a planc may be ‘regarded as the envelope
of a system of conics, in various waystiIn that general case, each
of the conies had four points of contact with the quartic curve; in
the present case, the circles each’touch the quartic carve in two
points, beside passing through, the double points.) It is clear that
there are three other ways ir(which the guartic curve in the plane
= may be regarded as the)envelope of a S{s‘teﬂl of circles, each
system consisting of cirélts cutting a principal cirele at right angles,
with their centres onNa certain conje. Let these other conics, the
Pl‘qjccl;ions from &Pf the conics which are the polar reclprocalfis
in regard to O,(of the four quadric cones containing the quartic
curve on {3, lje\ca,]]ed @1y 7y 0. It can be shewn that the four
conics o, Gyandy, o have four common tangents, passing in pAirs
through {he points I and J; or, as we may say, that these four
conics.are confocals. To prove this, it is only necessary to shew
th&t: there are four planes through U, two through each _Of _the
Sengrators of O at U, which touch the four conics in the principal
plancs, of which o, a3, oy, o are the projections; or, reciprocating
in regard to 0, that there are two points, on each of the generators
"’f_ﬂ at ¥, which lic on all the four cones such as (¥). The two
points in which a generalor at U meets the cone (¥), lying as they
do on the quartic curve upon £, lie, however, equa]_ly on the otl.ler
three cones which contain this curve. The four points in question
are thus the intersections of the generators of & at U with the
cone (¥); and the four common tangents of the CONICE &y Gy, Tpy O3
are the intersections with = of the tangeni planes of @ at these
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four paints, these tangent planes being the polars of their points
of contact. Henee it is clear also that the connnon tangent lines of
the conies @, o, ¢,, o, are, in pairs, the tangent lines, of the
quartic curve in o, at the points I and J. The foci of the confocals
0y 05 Oy 3 are the intersections, other than at 7 and J, of their four
common tangent lines. They are, then, the intersections, with ar,
of the lines of intersection, other than the generators of Q0 at U,
of pairs of the tangent planes of €, at the four points wheresthe
cone (¥) is met by the generators of O at U. "T'hese lines of Ifer-
section are polar lines, in regard to ), of joins of pairg GBhese
four points. "

'The four director conics o, oy, &y, o, arc the projections, from U,

of four conics, v, v, #, 1y, which arve the polariyceiprocals, in
regard to £, of the four cones (¥), (), (V.), (V)4 séath the property
that a common point of any two of these cois)lies on the others.
'T'he conics v, v,, 7, v, are thus such that % cainmon tangcﬁlt péane
of any two of them is equally a tangenpyplane of the other two,
and t}{ey fornt’ gugﬁllglzlé%%g %l%,(!)?éﬁ(illed'\the foeal conies of & set of
confocal quadrics (Vol. 1, p. 94). It3s)a famniliar fact that of the
common tangent planes of such a System of conics there are four
which pass through any peint (sich as U), )
- The centre of the conic g, namely the pole of the line JJ in
regard thereto, is the projegtion from U, of the pole, in regard to
the conic v, {in the prineipal plane; of which ¢ 1s the pro']et‘.tT_OH)a
of the line in which this plane is met by the tangent plane of {} at
U. As this principal_blane is the polar plane of ¥V, this l{ne l?f
meeting s the polﬁ ine of UV in regard to  ; and the conic v 18
the polar reciprogal of the cone (7). The point in the plane of v,
which projegts’into the centre of the conic o, is thus the pole, m
regard to {,.0f the polar plane of U taken in regard to the cone
(¥). IEtle polar plane of U, in regard to the conc (¥), meet ﬂ“;
tangentiplane of 0, at U, in the line 4, the pole, in regard to 2,0
this\polar plane, lies on the line, X, which is the polar line of / in
régard to ), and this passes through U. The centre of the conic ct
¢ Nis‘the interscetion of A with the plane w. In fact the polar plancs
‘of a point, in regard to all quadrics having a quartic curve I
common, intersect in & line. Thus the line Z, and also the line A,
equally arise from any of the cones (), (V,), (), or the conlts
g, @y, 03, 0y have, as we know, a common centre. It Is easy to see
also that the foci lie in pairs on lines through this centre; as we
also know, _ ]

The sixteen foci of the guartic curve. Are intersections
of a principal circle and a director conic. In general for an
algebraic curve in a plane, considered in relation to two Absolu t-;
points, I and J, a point which is the intersection of a tangent o
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the curve drawn from I, with a tangent of the curve drawn from J,
is called & focus of the curve. For a curve of class m, that is, of
which m tangents pass through a general arbitrary point of the
plane, there will then be m® foci; unless the curve contain one or
other of the points I, J. For a quartic curve with two double
points it ean be shewn, and will appear below, that four tangents
can be drawn to the curve from either double point, other than the
two tangents of the curve at each of these points. There will there-
fore be sixteen foci. We prove that these are the intersections of
the principal cireles, each with its corresponding director conicg \.J

We may first verify that such an iniersection is a focus, ndinely
that the lines which join such a point to I and J are both tangents
of the plane guartic curve. Such a point is the projection of a
point, say F, in which a principal section of the quadtie L}, say by
the polar planc of ¥, is met by the conie, v, in thig {lane, which 1s
the polar reciprocal, in regard to Q, of the cone ()X}, The tangent
plane of © at the point P, being the polar o ANn regard to 0, is
a plane passing through F which touchés thed Vpmaryianeln
is the point of contact with 2 of a conpmien tangent plane of the
cone (¥), and the enveloping cone of {(\drawn from V. The two
gencrating lines of £ at this point BIying in the tangent plane of
{} at this point, will both touch theone (F7), and the points where
these touch this cone, as they lidchoth on Q and on (¥), are points
of the quartic curve on {2; moreover, as these lines touch (¥7), they
equally touch this quarticictrve, at the poiuts where they touch
{¥). 'These generating lihes thus project, from the point 4 qf 0,
into two lines which a%s angents of the plane quartic curve mn w.
These generating lifies, however, intersect the generators of (at U.
Thus they projeatinto lines passing, one through I and one through
J. This shewsthat an intersection of a prineipal circle with a
director comie&s a focus of the plane quartic curve, as has been
said. Tt may~be called a point-circle of the enveloping system.

To shew that all the foci of the plane quartic curve are thus
obtaiited, it will he sufficient to shew that there are two sets of four
tangents which pass through either  or J. Nowa tangent through I,
of the plane curve, is the intersection with = of a plane through
the generator UI, of Q, which contains also a point where it
touches the quartic curve on {2, this being the point of .Q_ which
projects into the point of contact on the plane curve; the line U1
1s & chord of the quartic curve on 2, meeting this curve in the two
points where it mecets the cone (¥). It will be enough then to shew
that, through this chord of the quartic curve on Q, there ean be
drawn four planes of which each, in place of having two other
points of intersection with the curve, has a point of contact with it,
that is, contains a tangent line of the curve. Let such a plane
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through UI touch the curve in II'; as the tangent line of the eurve
at H meets UZ, and touches ) at H, It is a gencrator of ©; as this
tangent line touches the cone (V) at H, a tangent plane of (V) can
be drawn through it, which, as countaining the generator of 0 con-
stituted by this tangent line, is also a tangent plane of . Thus
the points such as H arise from common tangent planes of the cone
(¥) and the quadric {3, which are four in number. They have
already been considered ; and we see that the foci already found are,
all that exist. There are (Vol. tr, p. 69) four gencrating lines of
of either system, which touch the quartic curve on (L. A plane
through one of these eight lines, which touches one of the quadric
cones cortaining the curve, will contain another of the lings; and
will touch 0. The sixteen foci are the projections gf\the inter-
scctions of these eight generators. Incidentally welsge that to a
general cubic curve in a plane there can be drawh four tangents
?‘om any point of the curve, forming a pencil’zelated to the four
rom any ofhey, PERalibrary .org.i WA\
The e{[uation of the ge%?{-sfll é}.g;;ent pl Q\})f the cone (¥}, as for
a conic, may be taken in the form @2 4 26Q - R =10, }vhere
P=0, BR=0 are two arbitrary tangén$'planes, and §= 0 is the
plane containing the two generatars along which these touch the
cone. In particular, we may takeyfor P=0, R=0, two tangent
planes of (¥) which also touch % There will then be two values of
8, beside 8 =0 and @ = o , fomwhich the tangent planc of the cone
also touches 3. If one of<these be &, and the corresponding plane
be T'=10, we have an'ide\ntity of the form 8P + 26,Q + E=p'T,
where p is a constafth, 'Tf, in this identity, we suppose the coordi-
nates to be those©f a point on the cone (37), on which @ =(EF )*,
we infer 8, PA40BY = pT%, an equation true for points of (¥), m
which each of P =0, B =0, T'= 0 represents a planc touching both
the cone (Kland the quadric .
If we~ghppose the quadric @ referred to four points of which one is the
poing frem which the figure is projected on to the plane @, tuker a3 (0, 0, G 1)
angther is the point (0, 0, 1, ), and the two others are the interseetions of
tHe generators at the former point with the gencrators at the latter, we mey
{_suppose the eyuation to be 22+y2— 22 =0. Now, we ensily verify the identity
(" — w'2)2 + (2’ — 'R+ 222 (el oy’ — b’ — 't) = 2% (w2 - 2270 457t + g7 - 22
wherefore, if T9=0, T"==0 be the equations of the tangent planes at two
ints of the quadrie, (&', ¥, #, ¢) and (&”, g*, 2", £'), We may SuppPOSE, a't.,a.}l
Intersection of the fangent planes with the quadric, that 7= (DD

whero
(P =[(ar — 2’224y —y 2)]/22 22
Thus (cf. Vol. 11, p. 184), we can infer from what is proved ahove _that the
distances of any puint of the quarfic curve in the plane @, from three of its ool
lying om the same prineipal civele, are connecled by a finear equation.
Construction of the plane quartic curve given four foci
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lying on a circle. If the Absolute points, I, J, and also four
points, be prescribed, the six points lying on a conie (cirele), two of
the plane quartic curves, with double points at I and J, can be
found, having the four points as foci, to pass through a further
given point. And these cut one another at right angles at this
point ; that is, the tangents of the curves at this point meet the line
17 in points harmonically conjugate in regard to I and J. That a
finite number of such curves is to be expepted appears by countings
constants: "L'hat a planc curve should have a given point as double
point requives three linear conditions for the coefficients jf Jifs
equation; that the quartic should have a given focus, opshould
touch two given lines, requires two conditions, and in the present
case there is a reduction beeause the four foci are not,infiépendent
points, The number of prescribed conditions for a'gnartic curve
throngh a given point Is thus 6+ 7 + 1, or feufteen; while the
number of available coefficients in the equationlafva plane curve of
order », or 7 (n+3), is also fourteen when p=4. .
Let P, @, R, S denote the given foci, Xl pRa Bt H85tintl
in the plane w. Take an arbitrary potht XU, not in this plane =,
and let 2 be a quadrie containing thieJlines UZ, UJ {other than
the two planes TUJ, o). Let the lines UP, UR, UR, US, UD meet
this quadric vespectively in the peints P’, @', R', 5°, 0". The sec-
tion of 0] by the plane P', 5’ projeets from U, on to =, into
the circle PQR, which, by hypothesis, contains §; thus the plane
P’Q’R' contains 5. The p%ane P'Q'R’S’ is to be a principal plane,
n our previous notatiof. yLet its pole, in regard to {1, be 7. The
tangent planes of Q\E\P’, @', R’, § pass through ¥ ; it is possible
to describe a quadwic ‘cone, with vertex at ¥, to touch these four
planes, and have\th‘e line VO’ for generator. In fact, two such cones
can‘be described,"aud their tangent planes along ¥ 0’ are harmonic
COnQ}llgates“irg\r"eg:u'd to the two tangent planes drawn to £ from
Vo' (v D&L,E 25). Either of these cones mects {2 in such a quartic
curve g5'we have considered ; and the tangent line of this curve at
0 .1}?5}011 thP: tangent plane of the cone at €, which contains the
“11115\0 vV, bemg_ the intersection of this plane with the tangent
< ptlallle of £} at O'; alsu, the two tangent planes of the quadric O,
Wl’llc}'l can be drawn through OV, contain the two generators of
at (. There is thus, on the tangent planc of O at @, a harmounic
peticil consisting of the two generators of O at 0, and the two
- tangent lines of the two quartic curves on {) obtained by the two
cones (V) ; for we have secn that the tangent planes to £ from OV
are harmonic in regard to the two tangent planes of these cones
along OV, If now the curves on £} are projected into two quartic
curves on w, this pencil becomes that formed by the tangents at O
of two plane quarties through 0, and the lines 01, 0J, |
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We have thus constructed two quartic curves in =, as desired,
Conversely, consider any quartic curve, in the plane =, that may be
possible, with I and J as double points, having the same four given
foci, and passing through 0. Taking U as before, and the quadrie 0,
we can shew that this curve arises by the construction we have
made. Let the given points P, @, R, S, O pive, as before, the
points P, @', B', 8, O, of £}, project the guartic curve supposed,
from U, on te the quadric. The curve on {2, so ebiained, will me
each of the lines U, UJ in two points other than U ; it will touch
the two generators of & which interseet in P', and also the paivsof
generators at @, R’, 8’; and it will pass through O’ As this thrve
Lies on {2 it will meet the tangent plane at P’ only on the geverators
at P’ ; thus, as it touches each of these, its intcrsectidng with this
plane count for four in number; and similarly at @pR', §". The
curve is thus of the fourth order, and does not, pass through U it
meets every generator of £ in two points. ’l‘hus1 it lies on ano(tp}.j}(;r

uadrie, beside O ; ercfore lies on a guadric cone, say .
qA tangent linzmgig ; ule% g?l%«lérﬁ{l%ﬁf‘ﬁus 'éﬁ};\ a tangent plane of
this cone (). In particular, the géderators of £ al P’ must
touch (W), and equally those at €', H)S. We may thus conclude
that (W) may be taken to be thejsame as (¥), and thus recover
the preceding construction. N\ .

Inversion of the curve jnto itself. We have explained, in
Chapter 1 (above, p. 12), the“process of inversion, in regard to the
quadrie ( ; whercby, being given a point L, and its polar plane, A,
in regard to £, we pa'sg‘]fé)m any point, P, to the point P, of the
line LP, such that B’ are harmonic conjugates in regard to L
and the point (LP,%. To a quadric cone there arises, as its -
verse, another, giadric cone, intersecting the planc X i the same
conic, with vértex the inverse of the vertex of the first cone.

Considerthen the curve, on 0, which lies on the cone (V) _The
curve which is the inverse of this, in regard to L, is the locus ’Of the
second(intersections, with Q, of the lines joining L to the points of
thefimst curve ; and this inverse curve lies also on a quadrlc cone,

A, obtained by inversion from (¥). The tangent planes, and
\generators, of these two cones, meet on the polar plane A, of L,m
regard to Q; and their vertices, P and ¥, are harmonic inverses 1
regard to L and A. By projection from a point, U, of £, the c}lr\-‘e;
(Q, V) and {Q, 7”) become two quartic curves in =, both having 2
and J for double points, though in general with different tangents:
and these curves are inverses of one another in regard to the Pf’“jt
of @ obtained by projection of L, that is, in regard to the cmi) e
obtained by projection of the section (€2, 1), If, in particular, L he
taken at ¥, the two quartic eurves on {2 coinelde ; 1':h11§ the Plf’«n?
quartic inverts into itself in regard to any one of the principal cireles.
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Another particular case is when L is so taken that the line UL
mects the original quartic opn {1; then the inverse quartic on £}
passes through U, and projects into a cubie curve on =, having
each of I and J as a simple point. The original quartic curvein =
can thos be inverted into such a cubic curve, pamely by taking the
centre of inversion on the eurve itsclf. Conversely, the properties
of the quartic curve in @ are obtainable by inverting a cubic curve
which passes through the Ahsolute points I, J, with respect to any
vircle in its plane, And such a cubic curve is obtained by proj ecling,
a quartic curve on {2, obtained by the intersection of this with.y
another quadric, from a point U of this curve, the points 1, J hetpe
the intersections of the generators at U with the plane, =@, on'which
we project. N\ )

Ez."1, We may consider what are the properties 6f'a cubic
curve, in & plane @, passing through two given Abgglute points,
1, J, of this planc, which arise as particular cases of those obtained
above for a quartic curve having I, J for doublepoints. There will
be four familics of cirdles (conics through Jund Afradibtenylingin
the cubic carve in two points. The circles ‘of one family will have
their centres on a parabola, and will all out a fixed circle at Tight
angles. "The four parabolas will haveit common focus, the inter-
seetion of the tangent lines of theltubic curve at I and J; they
will also have a common axis, abdight angles (in regard to £ and J}
to the tangent line of the cubie curve at its third intersection with
the line J. The four intezsdctions of a parabola with its associated
principal cirvele are foc ¢ the cuhic curve.

Fr. 2. To obtain ‘a\formu]ati(m by equations, we may take as
points of referencg,fob coordinates @, g, %, 3 first, the centre of
projection U, oun¥y/as point (0, 0, G, 1); by hypothesis th_ls point
lies om the coued#); then, the points where the cone (¥') is again
met by the géhétators of (3 at U, as points (1,0, 0, 0) and {0, 1,0,0):
and last, ag'point (0, 0, 1, 0), the intersection of the generators of
£ at thése two points. The equation of 2 is then capable of the
form-gp— 2t = 0; and the cone (¥) may be regarded as the envelope,
fop\}‘al‘}’ing 8, of a plane with the equation

8 (x4 y + o) + 20 (I + my) + P+ miy +ps +1=0,
the plane Zz +my =0 being that which joins the point (0,0, 1, 0)
to the genemtot: of the cone (F} which passes through {0, 0_3 0, 1).
The coefficients 2, m* are chosen so that the cone contains the
Paints (1, 0, 0, 0), (0, 1,0, 0). By eliminating %, hetween the equa-
tlon of the cone and ay — #t =0, we thus find, for the equation of
the cubie curve,
my(w—}—y+zD)+z”(Px+Qy+RZ)=0,

where P=p 4 g, Q@ = p+ om?, R=po, D=0+ ({— my. This curve

B0 1v, 7

Q"
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touches #=0and y=0 on z =0, and contains the point &4y =0,
2=0. One family of enveloping circles is given, with varying ¢, by

ey + 2z (p+ 17 +yz(d+mP+22 (0 +p)=10;
the centres of these circles lie on the parabola
a4yt 4 (U—m) (=t =0,
and they cut at right angles the circle given by
xy 4+ rzon + yao (1 —n)— 2 {clm + p) =0, O

where n=1{{] - m), O\

If, instead of p, &, I, m, we regard P, Q, R, D us givempwedind,
for &, M

(a*— oD + P+ Qp=4(PQ—RD),

and the equations above given then determine pks";".'\x?z?, and hn.

Lz, 8. The cubic curve just considercd afises by taking the
centre of projection, U, to lie on the quarticgbrve on {1, Another
particular case, fotbthul iy euetnobtaingh by projection from U,
arises by faking U on one of the pripdipil sections, say, on the
polar plane of ¥, so that ¥ is on the tangent plane at U, of the
quadric. In this ease the plane quartic curve in = has four foa
lying on a line; the conic in mpwhich is in general the locus of
centres of a family of envelopihg circles, is in this case a l}ne
coinciding with the degenef@ite circle to which these enveloping
circles are orthogonal., "Laking
L=lztmytnz, C a-,z*g;\- may, Lp=la + my+ 5, Co=LE+m,

for » =1, 2, whexe \‘5\7; as well as I, m, n, &, m,, n,, arc constants,
such a quartic gdrve is given by
MN€lay - 2Ly = (Cry — 2L) (Cury — 2L,
and is the\’e}velope of circles
AN (Cy — 2L) + 26 (Cray — =L) + Coy — 2L =0,
whose centres lic on the line 2 (2F +yn)—2=0. )
o Ex. 4. H the centre of projection, U, of the quarlic curve on £,
_be taken at one of the four points of u principal scetion which, in1
gencral, project into foci of the plane quartic, namely at a point of
contact with O of a tangent planc of the conc (¥), so that the cone
(V) touches the tangent plane at U, of the quadric, another par-
ticular ease is obtained ; then, the intersections of j:he cone (_T‘ b
with the gencrators of () at U, coincide in pairs, in two me{ts
which lie on the generator of contact of (¥7) with the tangent lone
of ) at U. The quartic curve in & theu bas, at each of I an J,a
double point with coincident tangeuts, namely a casp and, of one

set of four foci of the curve lying on & circle in general, one focus
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disappears, and the other three lic on a line. The quartic curve is
then the curve known as a Caréesian. Its equation can be found
from that in Ex. 8 by suppesing 4, =0, m, =0, n,=1, so that C,= 0
and L, =z. "The Limagon, and, thence, the Cardioid, are special cases,

Angles of intersection of enveloping circles of the plane
quartic which belong to different families. Returning now
to the general case, we prove that, if we take fwo families of en-
veloping cireles of the quartic curve in =, the angles which a varying ¢
circle of one of these familics makes with twe fized circles of the
other family, have a constant sum or difference (Jessop, Quariérly
Journal of Math., xxim, 1889, p. 875). The angles are measufed in
regard to the points I, J (as in Vol. 1, p. 167). "

The angle, between two circles obtained as projection bf two
plane sections of the quadric {2, depending on the reldiion of the
tangents of these sections, at one of their points ofintersection, to
the generators of £ at this point, is equal to theangle between the
plancs of the sections, measured in regard tethe quadric (Vol. 1,
p. 198); it is thereforc equal to the intervéibutwibnate grgdén of
the planes of the section, measured by the'quadric. The result to
be obtained is therefore this: If we ta'[('c"ﬁpon the conie 7, which is
the polar reciprocal of the cone (P )i variable point, P, and take
upon the conie v, which is the polar reciprocal of the cone (¥),
two fixed points, 4, B, the sumywr difference, of the intervals P4,
PB, measured in regard to the quadric 2, is independent of P. As
the conics o, 2y, v, 7y arg§ach a system as the focal conics of a
system of confocal guadries, this result has already been proved,
Yol 1, p. 96. We g@(su\-n to this point of view below.

The propesition (15 however a descriptive one. Suppose that we
have four planesia, 8, v, 8, which we take in order; take the
four lincs of iftersection of consecutive pairs of these, say (% 8),
(@9 ) (vs 358, @). Consider the interscctions of these fO}II‘ ]me’s
with a gi¥en/quadric, say, vespectively, P, P'; &, &'; £, B’; 8,8
It mayhappen that four of thesc points, one on each line, lieona
planeisay P, @, R, S lic on a plane, 8. It js then also the case that
thd other four points, P, @', B’, 87, lie on a plane, say ¢ ; for, since

“the eight points lie on the three quadries consisting of, (e) the
given quadric, (%) the degencrate quadric consisting of the plane-
Pair (a, ), () the degenerate quadric consisting of the plang-p_alr
(8. 3), and these three quadrics are evidently such that the third
docs not contain the complete intersection of the first two,1t follows
(Vol. ur, pp. 148, 154) that the quadric consisting of the plane &
and the plane P’Q’'R’, which contains seven of the eight points,
likewise contains the eighth point 5, which we suppose not to lie
on the plane 4. '

This being understond, the descriptive theorem above referred to
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is that, if {F1) be a q_lmdl‘ic cone pussing throuch the curve of 1
tersection of & quadric 0 and a quadric cone 47, and 4, v be &m-
two tangent planes of the cone (), while i3, 6 are any tw’oftan en{
planes of the cone (V1), and we consider, 1 here, the fonr ‘linegs 'ltllf
intersection of ?;he pair of planes «, v, cach wiily both the plane
ﬁ, 3, then the elght points, it which these mect The quadrie % lieS
in two sets of four, upon fwo planes, ~av i and . The Tines of
contact with the cone (¥), of the two l)l‘-‘llh"\ .~ lie on a plané
say e likewise the lines of ¢ tof A b with o I L DN
y'é’?th | p ines of contnet of @y 6 witlh (470 lieon a planie
gay ¢ the planes interseet in the line of inlerscets . AN
A hgrmonic, i(ﬁ nter lbL ' e of 1‘11l¢‘1 ~cvtion ofe‘\and £,
1 egard to the-e. 1 order to makdEhis pro-
position clear we may gvc at onee wovery siple pmi;f\\\'ith the
symbols : Denoting by a = ¢ the cqualion o the phivew a,and so on
the equation of the cone (F )y may he sup LI . 20,
the_equation of the cone V) LA o e
. 35; S > cone (V) may TR N suppuscd to be
o Eu.h-* b herefore the equation of the yitlic (2, which passes
Poii‘égtotbe \;mrzs{bfuﬁmﬂ?ba reobiein of Thesd Ao contes, may be sup-
posed o, S;m—eea: m* (3 - R LR :\hl:' (oo 1o propet constant;
s s b e as dy —m B = (e AWM b msy Lhis equation
thz“:fs a;; a point of {2 which iswpe the line 14, /3) lies on one of
o Q\vgnpaz:.lnes ;—tﬁng’;ﬂ, ¢ + mEe the sante being true of points
o o myad?e e lines ({35.7)* (745 61, (&, o1, This proves the
Now consider the religti of thi Pt ition wi
Rvicor i r;lia’l‘f?(‘:llr_tTtl ”l‘l.‘i. deseripiie I"l‘lfl“)*lt'(}t“ \\'lth.
e o cinolon ST ve given for the aneles of intersection of
Teta PBTlg C:Smbes% of different tamilies, of Ihe plane quartie eurve.
> B, 77, 6 dedtour plasies such that the four Tines (a 8) (87
('Y 8) (8 1 ! L] y L TS
R,R',- S’ “2 ,Illt_fe}tl the quadric €2 in. respectively P, PR
* HEIY- R . JO ;o S0 :
ad Boit R“Vlt;S"t]];e propurty that . @, 1. S lie on a plane f
o ¢ s € on a plane, ¢ et the nngle between the
planes a8, measured in v i of ix i
F e Bt o of lcganl_tn the guadric, [hat 110 1‘eg=11‘d to
D\oteﬂ b}r [aP 8] .5 O :Zlhc (Ef“lrw denwn from the line (4, 8% be de-
¢ , 81; as has been remarked, Hhis 1< tlie same as the

sNangle bet )
S ween the tangent lines at a point of intersection of the

cireles i to .
to I aﬁl(fo‘]wh{;at}.le sections by a, 8 project. iyensired in TegaT
[8, ]+ a] If can then shew tlud [a. 21+ 17 8] is eqn:ml to
1 this fO!"m .in d;fé‘:‘to be mldcl'h!nml fhat the statement 1 cast
symbol [a, 8] is am;-_l‘t‘n(:c to t{‘:l(l:t.i(>r|:ll metrienl gromettys
unless more particu]ngi]ous 1k s34, andd by addifive nrultiples oL 7
is quite free from a a‘; Y fic[lll"‘l . the gmam.-h‘i(-;tl theoren, which
before called cross mbiguity, is one n reganl to the symbols, once
from the pairs i t'_fa%loh‘, 5111‘!1 ax are defined in Vol I!.p.lﬁﬁs arising
mind, the PI‘D{}fu f}l anes. hﬂ: Fx. 4 helow. This buing porne 1
that, if a beo the equation follon~ at once from the remer
s #s ¥ be three planes mecting in a points 0, of the quadni®y
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0, the three angles [, v}, {#, A], [A, 2] are together equal to , or
onc of these angles, properly taken, is equal to the sum of the other
two; this is only the statement that if the lines of intersection of
the three planes, with the tangent plane at O, be represented in
terms of the generators, 4, §, at this point, by ¢ + ¥, i + mf, 4 + nj,
then (m/n) (nf) (Iimy=1. Using this remark, and considering the
two points, P, R, where the plane & meets the lines (a, &) and (y, &),
we have '

= [97 a)+ [ﬁ, )G] + |:r6) 9]9 7":{6: 'Y] +{']’3 8]+ [85 9]5 O\
and heuce , < N
|2, 8]+, 8]=2m — [0, o] —[6, 8] —[6, ¥]—[¢, 8, >
where we have replaced {3, 8] by [8, 8], and {3, ] by{é, 8]. The
same symmetrical form avises for [3, y]+ [@, 8] L&

Ew. 1. For c¢iveles in a plane there follows, fra hat has been
said, that, if four circles, a, B3, v, &, be such that &\8 meet in P, P’;
while 8, v meet in @, @' «, & meet in B, B’ r&l'BI, meet in S, 57,
and, if P, Q, R, S liec on a circle, thenwf}'f@fa@ :gka,r ¥e'tn a
circle (Vol. 11, p. 72). P\

Eir. 2. Also that, in this casc, the two opposite angles [a, 8],

{7, 5] have the same sam as the twoelDpposite angles [3, ], [«, 61
Conversely, this theorem of angldghis sufficient to ensure that the
points P, @, R, S lie on a circlédy ) .
* "Ihis simple theorew of metrical geometry may well be regarded
as fundamental, In 'Lodlitgiter-Leathem, Spherical Trigonometry,
1901, p. 182, thereg iqﬁoted from Lexell, dcta Petropolitana,
1782, the theorem ‘}f, on a sphere, the corners of a spherical
quadrilateral lie ofi & small circle, the sums of its pairs of opposite
angles ave cquah®iSec also M°F. Orr, Trans. Camb. Phil. Soc., xvI,
1897, p. 95, A _

Fx. 8. Alde it is true that, if the sum of the angles of intersce-
tion of X‘pairs of three circles be ar, the circles meet in a point,

TheCondition that the sum of three angles, , 8, v, should he =,
is the-vanishing of the detcrmitantal discriminant of the form

) 2%+ g - 2° + 2y cos o+ Rza cos B+ 2y cos .
I¥ is easv to prove that the angle, in regard to the quadric
28+ g2+ 57+ 2= 0, between two planes, of equations
@+ byt ezt d =0 (r= 1, 2),
has, for cosine, G/ 0104, Where o=tz + ... F d.d, and
ol=al+.. +dr

Using this result for cvery two of three planes, the signs attached
to ¢y, @4, oy being the same throughout, it is easy o deduce that
the point of intersection of the three planes lies on the quadric. .

S J
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Ex. 4. Supposing that the plancs above denoted by o, v, 8,
8, 8, ¢ have, respectively, the cquations 2=0, ¥y =0, 2=0,¢=0,
£ =0, n =0, where there will be two identities, say

2+y+a+t+E+n=0, brtaytdztcd+gb+fi=0
the equation of the quadric, Q, will be of the form
Pry 4+ Qzt + REn =0,
Let the roots of the quadratic equation in A, .
PrA—a)A =B+ QM= -+ RN —grs
be denoted by A, Agy and define twelve quuntities wy, 4y, a \g_,
the equations >
Pa,=g—n,, Ph.=b—2x,, Qe,=c~N,, Q, f‘d?'i‘»)\ﬂ
:Rf;-_—_f_ Ags Rgv' =g — A .wo\i 4
for r =1, 2. Speaking of # =0,y =0 as oppbsie planes, and of
5=0, ¢=0 as opposite planes, and of £=0, p==0s opposite planes,
there will, among diﬁ'lrgaeut enty Ipoints of ,ih‘&fsection of three of
these six planes, be mglfll% P li&s‘g’&ﬂroug&fvhich no two opposite
plancs pass; these are the points preylgusly denoted by P, @, ...,
R’, §’. The equations of the generators of the quadric at any one
of these eight points can be writtémidown at once ; for instance, &b
the point # =0, 2=0, £=4, !:hes[c’ gencrators arc given hy
ra, V=ac M= EARY, am t=aet=Ef
and at the point # =0, x<0, » =0 by similar equations, obtained
by writing 5g,7* and 535 respectively for £A7 and £/, and so
for all. N\

Further, considexing first, for example, the two planes =0, 2 =0,
the tangent plagiesof the quadric through their line of intersection
are given, byavhat we have Just said, by @, = z¢,, @yt = ?1"-'-3__'1-
Thus the,,ag&le, w, between the planes # =90, 2=0, messured
regard o the quadrie, is given by ¢*™ = g,4,77/e,c;%  In general, if
we defie angles, o, 8, v, &, 8, ¢, by means of
) .\~f et =gy, BB =h b, Y =07, S8 =ddy,

Q° | IS St

then any two of the six planes, #=0, =0, ..., n="0, other than

two opposite planes, make with one another an angle, relatively to

the quadric, given hy the difference of the two corresponding angles
chosen from a, ..., ¢. This is the general form of the theorem, for
the angles between enveloping circles of different families of the

plane quartie curve, from which we started. .

Ez. 5. In Ex. 4, denoting P+ @+ R by 4,

also : Plab+ @cd + B~ fg by C,

and Pa+b)+Q (c+dy+ R (f+2)by B,

and (I — 44C) 47 by H,

Q"

{0,
hy
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prove that the condition that a plane, whose equation is written
Lo -+ my + nx + pt +uk + vy =0, should touch the quadric £ is

H{P7'm+ Q 'np + B ur) + U, U, =0,
where U,=al+bmten+dp+fintge (r=1,2)

Ezx. 6. The preceding results in regard to the angles between
plancs lead to results as to the intervals hetween points, as has been
ndicated. We indicate some of these, referring, for a less summary
account, to a note, Camb. Phil. Proc., XX, 1920, pp. 122-180.

Let two quadrics, ¥, W, intersect in plane curves; they thask
touch one anotber in two points, It is possible then to find angther
quadrie, U, touching ¥ at all the points of a plane seciiign;'a:nd
also touching ¥ at all the points of a planc section ; the planes of
contact necessarily pass through the poimnts of contact Of Y and W,
and arc harmonic in regard to the planes in whickhe ¥ and W inter-
scet. Two such quadrics, U, having, we may say, &g contact with
¥ and W, can be drawn through an arbitrary pemt.

Prove that, if 4T be any tangent to‘ﬂi’é"r]@ﬁ!ﬁ"f BragysaFe-fhom
any point 4, and touching ¥ n T, the}lfﬁse’r&'al AT, measured in
regard to the quadric U, depends only o2, Deduce that, if 4, B,
C, D be four peints such that the fowr®joins 4B, BC, €D, DA all
touch ¥, the sum of the intervals34B, BC, CD, DA, measured in
regard to the quadric U, and suitably interpreted, Js zevo.

Next, let K be any quadtie, other than U, which likewise has
ring contact with both Z.apd W. Then prove that, if from any
point, P, of the quadr'c\’gﬂ “tangents PX, PY be drawn respec tively
to Vand W, touéhing\fhese in X and Y, the sam, or difference, of
the intervals PX, BY.) measured in regard to U, is independent of
the position of P\pon K.

This result/ineludes many others (ef. Vol. 1, p. 211, Ex, 8;
Vol. 11, p. 96 Fx. 2). o

Ex. TN w=b—c v*=a—¢ =8~ b, the four hnﬁ:‘h joining
each of\Mhe points of coordinates (wcosh o, 0, ’e‘fv_SlIlh ¢ 1),
({Efscp'a‘li %, 0, wsinh #, 1), to both the points (vcos B, usin 3, 0, 1),
(& 00¥’8, usin$, 0, 1), touch the two enveloping Cones, of the
quddric at(a— p) +y2 (b—p)t+ 2 (c—p 1= ¢, whose vertices
have the tangential equation P*{b—p)— + @ (¢~ p)1 =0, where

Psinh § (a— vy=hocosh (« + o) -+ nwsinh L(a+ey) —PCOSh%(“"'Y)Q
@ sin L{B- 8) =& cos }{(B+ &)+ mu sin §(B+8)—p cos}(8—38). .

Er. 8. From the section of a quadric with a cone of _order n, having an
r-ple generator, obtain a plane curve of order 2n—7, with oue #-ple point,
aud two (n —r)-ple points, 7, J. This curve has 2 (n—r) (n+r—1) foci, lying
oL # circle, and is its own inverse in regard to this. (In particular, the in-
variant of a plane cubic curve is thus clear.)



CHAPTER IV

A PARTICULAR FIGURE IN S8PACE OF
FOUR DIMENSIONS

W consider now a figure, in space of four dimensions, whiclys
remarkable in that the numbers of the elements which it ¢optatns,
and the mutual relations of these elements, when propevly inter-
preted, are the same as arise for the figurc of the twenfw-seven lines
of a cubic swrface. The fizure contains twenty-seken points, cor-
responding to the twenty-seven lines of the cuhicigurface. In space
of four dimensions, four independént points detérmine a space of
three dimensiony;diforulibshrg ergdn we shalyin this chapter, use
the word solid, so that the figure will gontall a certain number of
points, lines, planes and solids. The Niventy-seven points of the
figure lie, in sixes, in seventy-two solids, corresponding to the rows
of the thirty-six double-sizes of dines of the cubic surface; every
one of these rows is in fact detetmined by four non-intersecting
lines lying therein (Vol. it 166).  The figure contains two
hundred and sixteen lines{'each juining two points of the figure;
these correspond to twoelihes of the cubic surface which do not
intersect onc anoth izélﬁd-.). In a similar way, three lines of the
cubic surface of Which no two intersect corvespond to a planc of
the figure ; thepearé 720 such planes. With the notation employed
in Vol. 11, p. 20¢5the elements being points, lines, planes and solids,
the structurgyof the figure is represented by the sym bol

21 (. ,;1\5,.\50, 16)216 (2, ., 10, 5)720 (3, 3, . , 2) 72 (6, 15,20, .):

this.fj::leans, for example, that sixteen lines, eighty planes and six-
teerisolids pass through every onc of the twenty-seven points; and
\"ﬂlat every one of the two hundred and sixtecn lines contains two
points, and les in ten plancs and in five solids; and so on. It
should be said that the existence of the figure docs not depend on
the Propositions of Incidence alone, but requires also the truth of
Pappus’ Theorem,
In order to simplify the description, the points are 1'epreseuted
by the same letters as are used for the lines of a cubic surface,
fyy @oy - gy Dry Boy ooo Byy Ciay Cisy +..» The solids arve denoted hy
capitals, O, Py, P, O’y Py, elc., where, in Pry, Py, the order
of the three suffixes is indifferent, but P, with two suffixes, is to

be distinguished from P,. Each of the nmubers cccurring in the
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suffizes is one of the six, 1, 2, ... 6. The relation of the points and
the seventy-two solids is, in fact, that represented by the symbols

O (@, @, ... ), (e ease)s Piyy (@5, @y, Gy, oy Coty £) (EWenty cases);
O {81y bay ... )y (ove case)s Py (Byy Doy b, Cusy €54 C)y (Ewenty cases);
Py (ay, by, gy Cay, Cogy Og), (fifteen cases); '
Py (agy By €335 €0y Oy Cg)s (fifteen cases);

these cvidently eorrespond to the rows of the double-sixes of lines
for a cubic surface (Vol. 1r, p. 161). It will be unnecessary to have
anotation for all the lines of the figure ; but the six lines containing
the pairs of points (@, &), (@, bo)y ... (@, B} will be denoted,
respectively, by sy, na. ... . Aset of five points which de'net lie in
a solid will be described as a simplex ; it will be foup@that there
arc two hundred and sixteen simplexes in the figare” And, for
clearness, it may be stated that a simplex correspbuds to five non-
intersecting lines of the cubic surface which hayétwe transversals;
five non-interaceting lines of the cubic sqrf: «c‘c}g}#icl]_hq.ve only one
common transversal are represented in %i’l%“ﬁigur%u By AveCoiits
belonging to the same solid. O

The cuse here considered, for its interest¥n connexion with the lines of a
cubic surface, may serve as an introdection to a wide Iiterature. In a re-
markable paper, “Cireles, Spheres, shd Linear Complexes,” Trans. Camb.
FPhil. Sge., xvi, 1898, pp. 181188, MaJ. H. Graee, having in mind chains of
theorems given by Cliford (Maik, \Rapers, 1882, pp. 51, 52), considers theorems
in regard to spheres passing if\sixes through points. Dr W. Burnside (FProv.
Camb, Phil. Soc,,xv, 1909, pf, §1-75) remarks that, if the space of the spheres
bt {nverted from a point %ot Iying therein, theorems are thence deducible for

aints Iying on a sphede in'Euclidean space of four dimensions; he remarks,
wwever, Lhat the conditfon of lying on a sphers, or guadric, is 1ot necessary
for the figure; udCproves the theorems to which we presently proceed.
Professor I', H_S¢hibute, ** On the relation between the vertices of a definite
six-dimensional gblytope and the lines of a cubic surfave,” B. do. of Sc. of
Amsterdanm, £4)Sep. 1910, pp. 375-383, gives, after Mr E. L. Elte, the co-
prdinntesi?{\t’he twenty-seven vertices of a regular fignre lying on a sphere
in Buelidean space of six dimensions, Such a figure is capable of a group of
l'Otfltigns’.' For relations with the theory of groups ses Burnside, “GrQUPG of
tationgl linear substitutions of finite order, ete.,” Proc. Lond, Math, Soc., X,
G911, pp. 400-508 (and, ibid., x1, 1012, pp. 295-299). For the %‘"‘.’“P of the
Iés of'a cubic surface, seé also Burnside, Theory of Groups (Cambridge, 1911,
Second Ed.), pp. 485-488; and Proe. Roy. Sec., uxxwir (1906), p. 182. Also
Jordan, Thaité des Substitutions (1870), pp. 318, 354; Burkhardt, Meth. Annal.,
Xaxviir (1891), p. 185, and xur (1898), p. 320, where the group is r?}_n-eaented
by linear equations, derived from the t wory of hyperelliptic fanctions. Also
L. E. Dickson, Linear Groups {1901}, Chap. x1v.

We proceed now to shew how the figure can be constructed. We
shall requirc two lemmas which, for clearness, may be given first :

. D) In four dimensions, let 4;, a,, ... a; be six given points lying
0 a solid, which we denote by 0. Through every three of these
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points let another definite solid pass; this other solid, through
thy sy @y, for example, will be denoted by P, If we consider
four of the six given points there will then be such a solid through
every three of these points, beside @; consider, for instance, the
solids, Py, Poyy Proyy P, passing through the threes of the four
points &y, &, @, 8,; these determine, by their intevsection, a fifth
point, not lying in 0. This we denote by ¢, o1 ¢, the suffizes ‘Q.‘ﬁ
being those not arising in the construction. And so in gemeral,
The five points, a;, ay, @, @y, 4, constitute a sinplex; the golids of
this simplex, each containing four of these points, are, 1'@{1']J\é(:ti\’el}’,
Py, Py, Py, Py and 0. In all, there are twenty solids such as
Py, and fifteen points such as e,; these points, whieh do not lie
in 0, belong to simplexes whose other vertices ar&/ii 0. The solid
Py, will be used, not only in the construction m‘" 6,2, but also, when
we consider the points &, gy, o, a5, in the ¢hnstruction of ¢, ; and,
similarly, in the construction of ¢;. Thu® Py, contains the six
points a,, & petysesbtianbibralf igmaw corsider five of the six given
points, say ¢y, @y, 4y, @,, &, then, of\the five siniplexes arising by
considering the fours of these fiveoints, there ave four simplexes
each having @, as one vertex, the‘completing vertices heing, re-
spectively, cu, €y, Cu» €. BhESe completing vertices themselves
determine a solid. It can,be*shewn that this solid contains the
point @,. Denoting this %olid by P, (not the same as Py), and
using a similar notation, in general, it can be shewn that the five
solids P, Py, P, By Py have a line in common, which therefore
passes through 4,5 "This line we denote by »,. These five solids are
those which arise, by considcring the fives from a,, ¢y, ..., & which,
in turn, do notinclude a;, a;, a., a5, a;; just as Py arose from the
five other than a,.

To Pl;oy%"this result, notice that every one of the simplexes used,
ino aiﬁ’ing the peoints ¢, here involved, has one vertex at @, and
has our solids, including 0, passing through «,. Take an arbitrary
soliel not passing through a,, say U, and let = be the plane 1n

$ which this meets the solid @. "Thé five lines joining a;, respectively,
Jto a,, @, ... a;, which are lines of O, meet the solid U in points,

lying in the plane = ; let these points be called, respectively, B

... By, The solid Py, containing a,, &,, @, meets the solid U 1n a

‘plane, say s, which passes through B, and B,. "Thus, in the solid

U, we have a plane, m, and, therein, five points B,, ... Bs: and
through the join of every two of these points is drawn a plane,
lying in U, that through B, and B, being @,. The point of inter-
section of the planes @y, o7y, @y, which arise from the points B,
B,, B,, may appropriately be named Cy; for it lies in the solids
Py Pry, P, which contain ¢, and ¢y, and is thus the point where
the line of intersection of these solids, joining @, to ¢, meets the
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solid U. By considering every three of the four points B,, B,, B,, By,
and the three planes, 47,,, through the joins of these three points, we
- abtain four points, such as Cy., namely Gy, Cy, Cyy, Cy. Tt has been
shewn above (p. 18) that these four points lie in-a planc, which
will then be in the solid &7. We denote this plane by II,. These
four points are on the lines joining a, 10 ¢, €5 Cu sy respectively;
thus, the solid containing g, ... ¢y also contains a,, as we desired
o prove, this being the solid containing @, and the plane II;. We
denote this solid by Py,. It has, however, also been shewn above
(p. 29) that the five planes, II,, I, ... [I,, obtained by considering)
every four of the five points By, By, ... By, meet in a point, if"the
solid U, Wherefore, the five solids Py, Py, ... P); meet in‘a.line,
passing through a,, as we also desired to prove. This jgithe line

we denoted by n,. {&

(I1) The second lemma we require deals with the ¥elations of the
solids Pz, Py, ... P, which intersect in a line, nyy passing through
the point 4;, and the solids Py, Pu, ... Py, whichy similarly, inter-
sect in a line, »,, passing through the puiny#lbr®iehbaildong ibhe
result we require from the beginning. Suppoese we have two lines,
#, ', In space of four dimensions, and {hyee solids passing through
each of these: namely, the solids 2, @, passing through the line 7,
and the solids P’, @, R passing throtigh the line . The solids P,
P’ meet in a plane, say a; similady, €, @ meet in a plane, 8, and
B, R in a plane,y. Let 4 bethe point of intersection of the planes
8, 4, or the point common to the solids @, €, R, R sEmﬂarl .
let B be (v, a), or (B, R P} P'), and C be (a, B), or (P, P, €, €).
Through the plane AB€ can be drawn a range (@, a pencil) of
solids; if H be the intersection with the line n of one of these
solids, and H’ the intersection of the same solid with #/, the range
of various positiohs of H on # is clearly related to that of the
resulting positions of H’ on »’. In particular, let the solid P,
through g, \heéet the line # in U, and the solid 7', Fhrough ',
meet the\lihe » in U, so that U, U’ are the intersections of the
plane arxBspectively with » and #'; similarly, let the plane 8 meet
wandy’ in ¥ and ¥, respectively, and the plave y meet n and »
N and W, respectively. The line UU’, In the plane g, meets
the line BC, which lies in this plane; thus U and U’ are in a par-
Geular solid containing the plane 4BC, that, namely, con:camll}g
the plane of the lines DD, BC, and the point 4. So ¥, V" are In
& solid containing the plane ABC, as are W and W' IWherefore,
for any position of H, and its corresponding point H', the range
U, V,W, H is velated to the range U, V', W', 1. . .

,Now let § be a fourth solid through the line », m?etlng the line
@ in 7", and 8§’ a fourth solid through the line #, meeling the
line n in 77, and Jet 5 be the plane (S, §7); also let 4’ be the point
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(a, 8), or (P, P, S, 8"}; and, similarly, B’ be the point (3, 6), or
(Q, @, 8, 87, and ¢’ the point (v, &), or (E, B, §,87). As, then,
we considered the points 4, B, C, arising by taking the solids P, &,
R with the solids P/, Q’, R’, so we can consider the points 4, B', €',
arising by taking the solids S, @, K with the solids 8, @', I’; thus
we can infer that if a solid through 4, B’, €” meet the linc » in H,
and the line #' in H', the range ¥V, W, T, H is rclated to the range
V', W', T',H. For these points H, H' to be the same as thosey
previously so denoted, since we had U, ¥, W, II related to U’, B
W’, H', it is necessary, as a condition for the solids S, S/§ bhat
U, V, W, T should be related to U’, ¥, W', I, Conversely stp-
pose this is so; let H be taken arbitrarily on »; then a\piint, H .
can be taken on #' so that the range U, V', W', T, {I%is related
to U, ¥V, W, T, H; and these points H, H will elsuch that the
five points 4, B, C, H, H' lie in a solid, and 160y the five points
4, B, ¢, H, H lie in a solid. ThereforeNsmilarly, the five
points B, ', wdpdibHblierity arphid, and sovdo €, 4, B, H, H'.
Thus we have proved that, if solids P, @&}, through the linc n,
respectively, meet the line #' in U, BROJF, 77, and solids P Q,
R', §’, through the line #', meet # in‘w'related range U, V. W, T,

-~ if, further, ¢, /3, v, ® be the planes{P, P"), (&, &), (B, B'), (5, 8
respectively, and, respectively, 4y B, C, 4, B’, C' he the points
(8, 7), (3, @), (&, B), (&, &), (B39), (ry, 8); and if H, I’ be any two
points, Tespectively, on n,m such that the range U, ¥, W, T, H is
related to the range U, &% W', T’, H'; then each of the four sets
of five points (4, B, G \H, H), (4, B',C',H,H", (B, C', 4, H, I,
(C, &', B', H, H') liesin a solid.

We now makqai.pplication of the tesults of these lemmas. Take,
for the linesyd{n’ of lemma II, the lines previously denoted, in
Temma I, hynsand ;. Take, for the solids P, @, R, 5, respectively,
those deyofed by Py, P, Py Pry; and, for the solids P', @', B, 8"
1‘e5pect§d_v, those denoted by Py, Psy, Py, Py Then, for example,
the ‘s'.é]i 8 Py, P, respectively, contain the points (@, € €10 Gss €35

a,n(} (@as Cay Coas s 655). Lhus we have the respective in Eersections
(fplu le P3|3P25)=c453 (Plas Pl::spena Pﬁs)_—'cssa (Ij'lF}:PlJ‘) Pu:UPEJ:{:‘““
(Plﬂ')PIES PEZ) P23)=6‘35, (Pna P‘JGBPE«U Pﬂi)=€46) (Pla':; P;e‘.eP-zs:PZB)zcﬁ’

'Therefore the points which, in lemma IT, were called 4, B, ¢ :?Lll'i
A’y B’, (, are, respectively, ;. s 630 a0d 55 €6y G- LDESE points
4, B, €, however, lie in the solid Py, which meets the lines m au&l
ny, Tespectively, in the points @, and a,; and thesc points 4, B 0,
OF Cys, Cgis Cxgs 1ie in the solid P, which mects the lines m and .,
respectively, in the same points a, and a,. Thus, by lemma II, we
see that the solids Py, P, P, P, meet the line », in a range
which is related to that in which the line #, is met by the solids
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P, Py, Puyy Py And in these rclated ranges a, and a, are cor-
responding points, _

But we can also infer that, if any other solid be drawn through
4, B, C, or ¢y, €5, Csy meeting n,, n,, respectively, in the points o,
and b,, then &, B will also be ecorresponding points of these two
related ranges, respectively. Let such a solid be denoted by P/,
Yurther, we can infer that the five points &, by, 4, B', €, that is,
fus Doy Cisy Cagy Copy Ji€ 0D 8 50lid, say Pl also, that the five points
by, by, B, C. A7, or By, by, Cgay s Caps Le on a solid, say Py, ; and
that the five points b, b,, C, 4', B', or by, by, €y, €y, ¢y, lic ona
solid, say P",;. Fully to justify the notation, however, it musk he)
proved that the order of the suffixes here used is indifferent. {Gon-
sider, for example, P, containing &,, bz, u, s €. Let the ppoint
in which this solid meets the line 7, whose definition jsanalogous
to that of », and 7., be denoted by 4. Taking togethér the lines
ny, 7y, there ave, throngh the former, the solids BH 0P, Poys iy
and, through the latter, the solids Py, Py, Py, P alse we have
the intersections represented hy WW‘{-dh}mlibral‘y\org,jn

(P Pray Pisy Py= sy (Paty Prgy Puss Py =6y (Prsy Prsy Posy Pua) =t

'Thus, as before, we can define &, dirgcﬂy from &,, and then obtain
by by a solid which, with parity of nofation, would be denoted by
P’y;. This is then the same as P4y And so on.

We have thus justified the propricty of all the symbols ohtainable,
by change of the suffixes, from

Py (a1, ayy g, (-‘:us;i?feh i)y Pu {81, Byy Cons 45 Cass i),
Kl‘} (Bys By Bgn Coga Tasy Car

Finally, we proxé.that the six points &y, by, ... & lie in a solid.
Tor this, consider¢for instance, the five points &y, €us Cmy Cas Coss
vijhich lic in the'solid P,,. With every four of thesg we can fom’l a
simplex, whos¢completing vertices lie, by lemma I, in a solid which
contains Abe“point 5. The simplexes in question, with the solids
containijgg the sets of four vertices of these, are, in fact,

2\ .
2 \¥ b0y Cpy oy Cgy &y Cizs Oy Cos
3 ! ! / ; .
\ Py, P 153 P’m; Py Py Py, P, Py, Plyy P
by Cuny €y Oy Biy Caas gy Ers

¢ ! !
P-iﬁa P’ms P’lsn Pilﬁ» Py Py, P50 Pligsy Plruss Py

where the completing vertices, not written, are. respectively "2’23 Bes
by, by, Thus it appears that the five points by, bz by bus b, lic In &
solid. By a similar argument it appears that b, ba, &, & and &, lie
in & solid. This is then the same as before. We can then complete
the symbols used, by writing, also, O (B, b, o+ 06)-
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The statement of the structurc of the figure, which has been.
given, can now be justified. The 27 points of the figure are those
which have been named. The 216 lines of the figure consist of the
joins of the pairs of the six points Jying in each of the 72 solids
which have been obtained ; this would give 72. 15 lines; but each
line lies in five of the solids, so that there are 72 . 4, or 216 lines.
In fact, the notation has involved that the line »,, joining the
points &, and b,, lies in the tive solids P,., ... P,,. That any .other
line also lies in five of the solids may be veritied; for instance,the
line joining the points & and b, lies in the solids O, P’ , ~;fm
P’ 5 or, again, the line joining the points ¢, aud ¢ lies\in’the
solids Py, Py, Prgys Py Prg. The 720 planes of the, fighre are,
similarly, those defined by three points Iying in thedsiwe solid of
the figure. But it will be seen, on examinationy et every such
plane lies in two of the solids, so that there are/73. 20 + 2, or 720
such planes. For example, the plane defined\b¥ a;, «., ; Jics in
the solids PyyandbPulibraryagaiinthe Plalgg.’deﬁned by ar, ¢y, 0
lies in Py and also in P,. The other duimbers of the structure
symbol can also be justified. For msfance, that a line lies in ten
planes: the line joining a; and 3, liesuih the ten planes containing
a,, by, ¢, where 7, s are any twa of ‘the numbers 2, 3, ... 6. Or,
again, the line joining 4, and gpds in the plancs joining these two
gogntg tf(j) @y, Ggy A3, Oy, Cy, WhEre i, § are any two of the numhers

s Fyochy L A

That a point lies in &ixteen solids arises from 72.6+27 =16,
that a point lies in 8Q plahes similarly arises from 720 .3 +-27 =80;
and that there are’sixtecn lines through a point can be similarl_y
shewn, the poin{’g,, for  example, lying in the lines joining this
Eoint éo oy 8§ s Ggy byy Cray Where 7, s are any two of the numbers
[0 £ 3

5 --n B )

It is alsb(df interest to consider the possible simplexes, of which
there gre®16. Of these, 40 exist with any one of the points as one
Iver’ge?:,\l(] exist with two of the points, joined by a line of the
ﬁg\mje, as two vertices, 3 exist with three of the points, lying in &

»o~plane of the figure, as three vertices, and 1 exists with any four of
the points, lying in a solid of the figure, as four vertices. In fact,
taking any four of the points which lie in one of the 72 solids,
there will, through every three of these poiuts, be apother solid:
and the four solids so obtained give, by their intersection, the fifth
vertex of the simplex. Taking three of the points of 2 solid, there
are three other points in this solid of which each may make a fourth
vertex of a simplex, taken with the first three ; the three com pletn}g
vertices of the three simplexes so obtained lie in the other solid
which contains the first three points. Or, the number is obtained
by remarking that each of the 216 simplexcs has ten sets of three
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vertices, while there are in all 720 planes in the figure; since
216.10 =720 =8.

Again, cach of the simplexes has ten edges, while there are 216
lines in the figure. Thus there are 216 . 10 = 216, or ten, simplexes
with two vertices common. Also, the 216 simplexes give 216.5
points, while there are 27 poinis in the figure; thus there are
216. 5+ 27, or 40, simplexes with vertex at any point of the figure.
There is in fact a correspondence between the simplexes and the lines(
of the figure. For example, the simplex @, a,, &, @, cw gor:
responds to the line joining the points &;, &,, the correspondence
consisting in the fact that no one of the ten lines joining &y &; to
the vertices of the simplex is a line of the figure. A\

The figure, we see, depends on the assignment ofyd points to
determine the solid O, requiring 16 coustants; thek on two other
points thevein, requiring 6 more; then on angther consfant to
determine each of the 20 solids such as Py, ;. and then, finally, on
another eonslant to determine &,. In allrgzp&blﬁuﬂiﬁl‘hl%l.s)?gﬂ&
constants, N\

Ez. 1. The points 4, B, C, D lie ib ene plane, =, in space of
four dimensions, and the points 4’,\B% C‘, D' in another plane,
@'; these plancs intersect in the peint 0. The condition that the
range (or pencil) of four solids,jaihing the plane =" to 4, B, C, D,
respectively, should he related to the range of four solids joining
the plane = to 4, B', €, respectively, is that the range (flat
pencil) of lines joining,Q\to 4, B, C, D should be related to the
range of lines joining O 4", B, C', D', .

_Ex. 2. Consides, four general planes, 1, 2, 8, 4, in space {_Jf four
dimensions. Let #hé points of intersection of the plane 4 with the
planes 1, 2, 83pé/denoted, respectively, by 4, B, C, the points of
tntersection sofvthe planes (2, 3), (8, 1), (1, 2) being, respectively,
A, B', C'¢\Whus, in terms of the six points, the planes 1, 2, 8, 4
are, resplettvely, (4, B, C'), (B, C', 4, (C, 4, B'), (4, B, C). Tt
is & kuewn fact (Vol, 1, p. 92; below, pp. 118, 120) that all lines

<

meeting the four given plunes meet another plane. Prove, in fact,

it if 4, B, C, £, B', €’ be symhols for the six points, subject to

A+B+C+ A4 +B +C'=0,
then all lines mecting the four given planes meet also the’plan’e
“'hlc}llcontains the four points whose symbols are 4+ B'+C",
B+C'+ 4, C+ 4+ B, 4 +B+C. o
It can be shewn that the unique line which can be drawn, from

the point ad + yB +zC, to meet the first three planes, contains
the point

TN A+B + )+ y (B + A+ (C+ 4+ B).
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In threefold space, given two arbitrary lines and two arbitrary planes, let -
the lines meet the fivst plane in &, ¢, and meet the second plane in B, ¢
Let B'C” meet the first plans in 4, and BC' meet the second plane in 4, Tt
ean be proved that the points ad4+yB4=0C, p7 A 3y~ 18 4 271" are ona
transversal of the two given lines,

Ex. 3. The figure dual to that considered in the text is of con-
siderable interest, "This will consist of seventy-two points and
twenty-seven solids, Starting with a point O, and six solids, a;, ¢,
... &, passing through this, every three of these solids meetQh a
line. On each of these lines is taken a point, such as Fig there
are twenty such poinis.  The four poinis Pu,, Py, Py, Pyodeter-
mine a solid, oy 2 and so on. The four solids ¢z, €5, ths ks Mect in
a point lying in the solid 4,, namely the point P, ~lhe five points
Py, Py, P, Py, Py lie in a plane, which is in thévsolid @, This
plane s n,. If Ny denote the common pointof™ihe planes ny, ny
{cf. Ex. 1, above), the two flat pencils ofdines Ny (P, ..., D),
Ny (Py, f’ﬁﬁ)]aa e re} ted to one another’y And so on.

E» 4. 1'in'Fx'8) f%éa%ﬂWandx%hc' assumed twenty points
such as Py, lie on a quadric threefo}d:\df the fourfold space, then
all the derived points, 72 — 21 = 5T NI number, lic on this quadric.
By projection, of the sections of this Guadric threcfold by the twenty-

seven solids which arise, fropt™a point of this guadric, on to an

arbitrary solid, we derive a figilre consisting of 27 spheres meeting
in sixes in 72 points. Wenmay initiate the figure with six arbitrary
spheres having a comuibn point: every three of these have then
another common pg}il?t. This is the point of view of Mr Grace's

paper referred to\( oe! cit., p- 182).
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CHAPTER V

A FIGURE OF FIFTEEN LINES AND POINTS, IN S8PACE
OF FOUR DIMENSIONS; AND ASSOCIATED LOCI '

The figure of fifteen lines and points. Let 4,0, ¢, d be four

lincs of general position, in space of four dimensions. Any twoef
these will then define a threefold space. Fora threefold spagcé we)
chall here use the name sofid. There will then be six such solids,
say, [4], or [a,d]; [8), or [5,d]; [C], er [, d]; [4], or [byels [B),
or ¢, «; [C7], or [a, §]. Conversely, if six such solids be given, of
which 1o three have a plane in common, they defing fourlines, each
the jutersection of three of these solids, namely a-asbhe intf.'erseciiigil
of [4},[B'), [C"], b as the intersection of (B 'd[g‘}f-' 47, ¢ from [C],
(47, (8, ]and d from [4], [B), [C] TE’.%E"-EE@ n[é/g%?@g-w Bibe a
common transversal, which we denote by, al ;’Eﬂlis is the line common
to the solids [4'], [B), [€]. Similarly, 166, ¢, d’ denote, respec-
tively, the common transversals of ¢, gy di of a, b, ds and of @, b, ¢
There are, then, twelve points of Shtersection of the eight lines
now obtained, which we denote a¥ollows: '
Ad=,0) B=(c,a) C={(a Db} A’ =(b,¢), B =(c,a) C'=(ab),
Pe(ad) Q(bd) R=frd): P'=(d,dsQ=d) B=(,d)
The point A, as containing a point of the line ¢, is in the solid
(6, c]: as conl‘..a.iningﬁhaoint of the line &', which lies wholly 1 the
solid [, 4}, this poipt 4 is also in the solid [a, d]. Similarly, the
point 4’ is inpbéth the solids Té,¢] and [4,d]; and each of the
points ¥, P’ jsin both these solids [b, ¢}, [a,d]. Denote the plane
common ¢ these solids by A. The lines AA’ and P P, both lying
in this phn“e, have a common point; denote this pm:pt by L. By
sinilag\reasoning, the plane, say y, common to the solids [¢, a] and
[b,d1 eontains both the lines BB’ and QQ'; let the point of inter-
scation of these lines be called M. Finally, the plane, szy v, common
b’ the solids [, 5] and [¢, d], contains the lines CC’ and RE'; let N
be the common point of these lines. . L

We can now prove that the three points L, M, N are In hnfa
namely, in the line which is common to the thre:e_sohds (4, a,_], [B, & :ta
[e,¢').” For, consider the point L: this point lies on ’the lme PP,
joiung a point of the line a to a point of the line &3 thus L 1“35;_
in the solid [4,a]; again, L 3s on the line 44, joiming 8 pomnt o
the Tine b to a point of the line ¥, so that L is 1n the S?lld [5,81;
the line 4.4, however, equally joins a pomt of the line ¢ to a

8

B, ¢. IV,
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point of the line ¢, so that L is also in the solid [r,¢']. Thus L is
in the three solids [a, &'}, [8, &', [e,¢"). By similar reasoning M
and N are also in these three solids. Thus L, M, N arc in a line.
This line we denote by e. See the diagram given as froutispiece to
the Volume. But further, the point L, as it lies on the line PP,
joining a point of the line d to a point of the line &, lies also in
the solid [d,d]; and, similarly, M and N arc also in this solid.
Wherefore, the four solids [a, 4], [, 8], [, ¢} [d,d7] meet in
Jine; and, as was previously remarked {(Vol. 1, p. 92), the proof'of
this depends on the Propositions of Incidence only. We dehote
the lines 44'L, BB'M, CCN, respectively, by 7, m, n, anl “the
lines PF'L, Q@ M, RE'N, respectively, by p, ¢, 7. The figate now
contains fifteen points and fifteen lines, three points l§ing on each
line, and three }iines passing through each pointg’{In cach case,
taking any one of the lines, and the six lineswther than this,
which pass, in couples; through the three pointsN¥ing on this line,
the cight remalning lmeseepyish gl four nonsntersecting lines and
of the four transversals, Zgﬁil mecting thrée of these lincs; the
figure is entirely symmetrical. We shall peak of the set, o, b, ¢
d, ¢, of five lines, as heing associated jany four of these may be
regarded as primary and the fifth detérmined from them, as ¢ was
determined from a, b, ¢, d. Bubkiequally, ¢ is dcterminablf(:1 ?‘Dm
. a, ¥ p8,'d, just as ¢ was determined from
__I__I_I_HI_]V_V vt a.,b, ¢, d, a:nld the five lines o, ¥, ¢, d,¢
I|. ¢ & e b ¢ dre alsoassociated. In all, the figure con-
ille . & o ¢ Jains 15.2 5, or six, sets of associated
ni' g I m \\ lines, every line of the fifteen being com-

& ! ;
wlea @ ¢ . &>g mon to iwo of these sets. :\s 18 _ealisﬂy
VIe ¥ mNG p Scen, these sets are given by the adjoined

Vile ¢ wod p scheme, which may be read cither i rows
PN or columns. ]

This Seheme saggests anolher notation for the lines, which will
be f'qupd\to be very useful. Namely, the line of which the symbol
heng.ﬁceurs in the 7-th row and the s-th column may be denoted
sither by rs or by sr. For instance, the line e is then 12 or 21,
and p is 56 or 65. In this notation, #wo fines of the fifteen dnder-
sect of, and only g‘; their duad symbols have no nwmber in cOMMOR,
as may be verified easily. Thus the three lines which meet In any
point have duad symhols which, together, employ all the six num-
bers 1, 2, ..., 6; for instance, the three lines 12, 34, 56 mecet n &
point, Such a set of three duads was called by Sylvester a syn-
theme; the fifteen points of the figure correspond to the fiftecn
synthemes which are possible. As another illustration of the_nota-
tion, no two of the three lines 23, 31, 12 intersect, but cuch is met
by all the three lincs 56, 64, 45; thus these six lines are generators
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of a quadric surface, and lie in a solid. There are, then, Zen such
solids, each corresponding to one of the ways of dividing the six
numbers into two triads; for instance, the solid we have eonsidered
corresponds to the triads 128, 456, and may be denoted, appropri-
ately, by cither of these triads; and so for the other solids. These
ten solids are, in fact, as is seen at once, the ten previously denoted
by [B,6]s ..oy [& s <oy (6 )y ..., each defined by a pair of the five

associated lines a, D, ¢, d, ¢; each contains, likewise, one air from N\

every set of five associated lines. We shall call these solids the ten
singular solids. Hach of the fifteen lines lies in four of these solidss)
for instance the line 12 lies in the four solids 123 {or 456), 12&(or
356), 125 (or 346), 126 {or 845). Further, through any oné of the
fifteen points where three of the lines intersect, there passisix of
the singular solids, two of these intersecting in the {plane of any
two of these three lines. Tor instance, through thepoint 12.34.56
there pass the solids 134 (or 256) and 156 (orR94), beside the
four which mect in the line 12; the former twd,solids eontain both
the lines 54, 56, but not the line 12, wWywuhdbraulibrary.org.in

Proof of the incidences with thé help of the symbols.
If desired, the incidences of the figure may be proved very briefly
by use of symbols. If the symbols of the points 4, B, C, 4', B, C
be represented by the same lettels; these symbols, since the six
points are in space of four dimensions, must be connected by a
syzygy, which, by proper chiice of the symbols, may be supposefi
tohe 4 + B + C+ A4 + B%'C' = 0. Thereafter, no further multi-
plication of these sy Ifo]é hy an algebraic symbol is legitimate,
save by ome the sam&or all (¢f. Vol. 1, p. T1). We suppose the
six symbels not tgo.be connected by any further syzygy, the six
points not beidgGh a space of three dimensions. The symbols o’f
the points Pp@y B, which le, respectively, on the lines BC', CA',
AR, are i each expressible linearly by the symbols of the two
points 'Qrbw"hosc join it lies, in such forms as P=mB + nC’. The
pointa P @, B avc, however, in line, and their symbols are con-
{le‘%teﬁ'by a syzygy; by the expressions for P, Q, R, this becomes a
S)“'.%}'gy for the six symbols 4, B, ..., (', which must then agree
with the fundamental syzygy for these. Hence, by ahbsorpiion qf
proper algebraic multipliers in the symbols P, @, B, we have, as is
easily seen, the results _

P+B+C =0, Q+C+4'=0, R+A+B=0.
By a similar argument, the symbols for the points P, &, B’ may
be taken so that
P+B+C=0,Q+C+A4=0, B +4'+B=0.
Th_ese, however, lead to P+ P’ =4+ 4/, expressing that there is
point of the line PP which is also a point of the line 44°. The
82
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symbol, L, of this point, may then be taken so that L + 4 + 4'=0.
The points of interscction of BB and QQ, and of CC' and
RR', are similarly established, with symbols M and N such that
M+B+E=0 and N+C+C'=0. These cquations, however,
in virtue of the fundamental syzygy, lead to L + M +N=0; this
proves that the points L, M, N lie on a line, e.

If, instead of the six points 4, B, ..., ', we introduce other six
points, F, G, ..., H', with respective symbols ~
F=L(B+C~-4), G=3}(C+4-B), H=}(A4+B_0)
CF =B +C-4), G =3{C+4 -B), H =4}d+BC,
so that F+ G+ H+F + G + H =0, then it is seen at {obce that
the symbols of the original fifteen points of the fiware are the
fifteen sums of twos of the six symbols F, G, ..., H/This is equi-
valent to saying that, if, in onc of the fiftcen possible ways, the
si{%c points #, G, ..., H' he divided into threg\pairs, and the juinsl.
of the poings of j n, then theé commmon transverss
of the Ehree joiﬁﬁ?ﬁ?fﬁorty ﬁi‘& teen ]'geghuf the figare, and the
Foints where the transversal meets the\joins are three of the orig@nal
ifteen points of the figure. Or agaii, any one of the original
fifteen points, say F+ F, is theelntersection, of the join of the
two points F and ¥, with the galid defined by the four remaining
points, G, H, G, H’. The th2¢a lincs of the fignre through F +F '
are the transversals, drawn tm this solid (G, H, G, H'), to meet one
of the three pairs of ql}posite joins of these four peints, G H,
&', H'. This shews {Hat the six points F, G, ... are entirely sym-
metrical in regard<te the figure of fifteen points and lines, and,
though they c%o. mot belong to it, may be used to construct the

figure. Essentdally, only one such figure exists (Vol. 1, p. 152)

The ﬁgu’eﬁ){f six general points in space of four dimensions was investi-
gated by MeH. W. Richmond, Quart. J. of Muth. xxx1, 1900, pp. 125—160;
Math. 'X@nd!. T, 1900, pp. 161176, To the present writer the figure of
fifteen \points and lines was independently suggested, as avising from four
linesy, by the problem of a double-six of lines (Roy. Soc. Pros, LXXEIV, 1911,
PNB99; Proc. Camb. Phil, Sve. xx, 1920, p. 1383). The locus of the third
< '*\orﬂer, associated with the figure, to which reference will be made below, was
‘considered by Segre {(d#i... Torine, xxu1, 1887, p. 547, and Memoria... Turing,
XxX1X, 1889, pp. 3—48). It has been remarked above {p. 38) that’spheres
and circles in threefold space may be regarded as derived from points and
lines in fourfold space. Thus the theory of the figare of fifteen lines, in
fourfold space, may be stated in terms of circles in threefold space. From
this point of view an ample introduction, which includes the two _number
notation for the lines, and the symmeirical equation for the cubic 109113
studied by Segre, is given by Stéphanos, Compf. Rend. xcni, 1881, P 634
(fﬂld f 578). For him, five associated lines have their {(ten) coordinates
linearly connected {p. 120, below). ¥t is shewn below (Chap. v} that the
original fifteen lines of the figure may be regarded as arising by transforra-
tion from the fifteen joining lines of six points in space of five dimeneions
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Ex. 1. Any two of five associated lines determine a solid; this
mects cach of the three other lines in a point. Prove that these
three points are in line,

Ez. 2. Any six points, in space of four dimensions, taken in
order, form a skew hexagon (say AB'CA'BC’); of this hexagon
there will be two sets each of three slternate sides (BC', C4', 4B’
and B'C, C'A, A'B); and there will be three diagonals {44', B,
CC"). Prove that the two transversals, each of one set of alternate /
sides, form, with the three diagonals, a set of five associated lines,

Ezx 3. In space of four dimensions, the three lines which, ai‘e,
the transversals, of one set of alternate sides, of the other seb of
alternate sides, and of the diagonals, of a skew hexagon,li¢“in a
solid. If we take the two hexagons AB'CA'BC and ABBA'CC, of
which the laller is obtained from the former by the interchange of
B and C, the three transversals so obtained, frosi\one of these
hexagons, all meet the three transversals so obtainedfrom the other
hezagon, and the two solids are the same, CEx. 18, p. 144,
below.) wuydbraulibrary org.in -

Ex. 4. Referring to the notation usedabove, let A, u, v denote,
as before, respectively, the planes LALPP, MBB'QY, NCCRE.
'Then the point of intersection of theyplanes u, » is the point of
symbol F—F (or 4"+ B +C); and' so on. Thus the E]ane by
contains the points G — ' and JH*- H'. Further, the solid (A, €),
defined by the plane A and the line ¢ mecting this plane, is the
solid defined by the four pgbints G, H, ¢, ', and so on. Now, in
space of four dimensions{ given a point, O, and a solid, TI, we can
define a transformationha harmonic inversion, from a point, P, to
a point P, by takip the point, M, where OP meets 11, and then
taking the point{#% on the line OP, which is the harmonic con-
Jugate of P in gégard to O and M. Shew that, if this transforma-
tion be employed, with O as the point (g, »), or F— F', and II as
the solid €X,.2), then the points K, F’ are interchanged, but each
of the pdints &, H, &, B’ is upaltered. The figure of fifteen points
and liftes is thus unaltered, in ifs aggregate, by this harmonic
inyérsion. In fact, the four lines BQ, B'Q, CR, C'E meet in the
‘Point (g, #); and the four points which are the harmoni.c comju-
gates of the point {u, #) in regard, respectively, to the pairs B, @;
B, Q; C, R'; (", R, all ie in the solid (A, e).

The plane X is the intersection of the solids [&, ¢], [, 2]; as bas
heen remarked. Cf Ex. 21, p- 148, below. .

Ez. 5. In space of four dimensions, the dual of a line is a plane.
Consider, briefly, the dual of what precedes, arising when we begin
with four arbitrary planes, of general position, say a B, v 3
Bvery two of these planes have a point in common; let the six
pownts so obtained be denoted as follows: :
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A4 =(a, 8), B=(8, 8), C=(v, 3,
4'=(B,7), B =(y,a), C =(a, B
being in space of four dimensions, these six points will not be in-

dependent. Conversely, if the six points be supposed to be given,

arbitrarily, the four planes are determined, each by three of these,
as follows :

o= (A','B,a Cr)) 18 = (Bs Cfs Ar)a Y= (C: A,) B’), 8= (A, B, C)° p
The dual of the meeting of two lines in a point is the Iying of t#o
planes in a solid, or the meeting of these two planes in g\line
(instead of a point merely). Thus any three of the planes dxe met,
each in a line, by another plane. In fact, each of the four'planes

o =(A!)Ba C)s 8’ = (Bra C, A)s 'Y' = (C’a 4, B), & — 6:4""1 BJ: C')
meets three of the given P]anes in a line. For ingtdice, the plane
8 meets « in the line B'C’, meets B in C'4’, atd miects y in 4B’
and so on. As the dual of what is proved abeve, the four points
(&, &), (B, By &y fAhred] By iy dysiplane; A& may also prove this
anew, by a method not the dual of thatused above. Recall first,
in space of three dimensions, that, if $hreé lincs be given, of which
no two intersect, and, from a varighle point, P, of onc of thesc
lines, the fransversal be drawn tosdie other tiwo lines, and thereon
the point_, Q, be taken, which jstharmonically separated from P by
the two lines, then the Jocus 88 Q is a fourth line. In space of four
dimensions, if two planesy&, », be given, intersecting in a point 0,
and H be any point ggen* a line, 7, which does not meet & nor
the two solids (£, H),\, H) meet in a plane, passing through 0;
this plane, as lyip@\l the solid (£, H), meets £ in a line; and,
likewse, meets 7 in & line, Thus lines can be drawn, through the
point lt:[, meeting the planes £, n; let such a line mect £ and 7,
res{_'ect“’e}}‘élﬁ X and Y, and let K be the harmonic conjugate of
H m regard to X and Y. Then, as H varies on , K lies on a
Plaﬂfi sing through O. This we see by projecting the figure,
J?I'Qm. y on to any threefold space. With this in mind, consider,
A0 the figure described above, the three lines 44’, BB, CC’, and .
e the common iransversal of these, say 7, meeting 44', BB, o,
respectively, in L, M, N. Let L’, on 44, be thc harmenic conju-
gate of L in regard to 4 and 4'; similarly, let M’, N', respectively
on BB and CC’, be the harmonic conjugates of M and N. Then,
it follows from what has been said that the plane L'M’N’ contains
the point common to the two planes 4ABC and A'B'C'; and, for
the same reason, that this plane contains the point common to the
two planes A'BC and 4B'C’; and so on. Thus the four points
(@) (8,8, (1,v), (5,8) all lie in the plane L' M'N’, which is

thus the plane associated with ; tated
With the B, crecate SZ’G.R the planes o, 8, v, &; or associate
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If we use the symhols 4, B, ... for the points 4, B, ..., choos-
ing them so that the nceessary syzygy for these six symbols is
A+ B+ C+ 4"+ B’ 4+ " =0, we see, for instance, that the symbol
of the point (8, 8") is 4+ B+ C {or its equivalent, 4'+B + ("),
Thus the theorem we have proved is that the four points whose
symbols are

A+B+C B4+ C+ A, Co A+ B, A+B+C

lie in one plane; as follows also becanse these four symbols have az
vanishing sum. The sccond and third of these symbols have, fo*
sum, 4 — A4', which is equally the sum of the first and faurth
symbols; the symbols of L, M, N are, respectively, 4 +4', B8,
C+C. Thus the symbols of &', M', N” are, respectively, 4 4,
B~ B, C—-C'; and each of these points is the intersegtionjof two
of the six joins of the four points (a, o), (8, 8), (v, 7945, 5.

Ex. 6. We have considered a process of harmaniie inversion, in
space of four dimensions, in which a given poini\and a given solid
were fundamental; we have also considered p.brocess of harmonic
inversion in which two given planes werds AHBIREARY oBapmose
now that we are given a fixed line, 1,5and a fixed plane, =, not
miersceting the line . The plane jointag f fo any point, P, meets
the planc = in a point. Thus a ling,say p, can he drawn from any
point I to meet the given lingwdand also the given plane o;
thereon the poiut, @, can be taken Which is the harmonic conjugate
of P in regard to the points where p meets / and =, This defines
a transformation from P t& @ (or conversely). .

IfX, ¥, Zbe poinfcs,sfft}hc plane =, and 7, U be points of the
line Z, it can easily he shewn that, with coordinates relative to these
five points, the tragsformation ix expressed by the equations

TG Y =y, F =k =t U =~
This transformation is evidently the combination of two sach as
are considefed”in ¥ix. 4, each defined with reference to a fixed
point angdhintfixed solid.

In BX\5, the planes 8, & correspond to one another by such a
transformation as that considered here, in which the fized elements
@ebtie line 7 and the plane L'M'N’ (as do the planes a, 4, etc.).
Shufilarly, in the original figure of the text, the lines d, d’ corre-
spond to one another by such a transformation, of which the fixed
elements are the line ¢, and the planc which meets in a line the
three planes Ay iy ¥ (19 the pla,nes LAA’P,_P!, ele.; see Ex. 4);
and the lines o, a' correspond in the same transformation, as do
b, ¥ and ¢, ¢/, The plane meeting, in a line, each of A, w, », is the
plane defined by the three points 4 —A', B~B, C~ C’ (or by the
three points ¥ — F, G — &, H—H). Cf Ex.21,p. 148, ‘helow,

Ex. 7, The fignre of fifteen points and fifteen lines can be



120 e Chapter V

-separated (in several ways) into two parts, of which one part con-
'sists of two triads of points together with the nine lines joining
--the points of one triad to the points of the other triad, and the -
sther part consists of two triads of lines together with nine points
in which the lines of one triad intersect the lines of {he other
triad. Of the lines and points named, no one is common to the
two parts, but the two parts together exhaust the whole figure,
The nine lines of the first part can be arranged in threc sets, ofs
three each, such that the transversal line of a set is one line of a
triad of lines of the second part, and the set forms, with the «thei
two lines of this triad, an associated system of five lines, Thewther
triad of the second part is similarly obtainable from anpthcr ar-

rangemeut of the nine lines of the fitst part. G

Lz, 8. An illustration of the transformation congicdered in Bx. 6
is as follows:—Let 4, 4', B, B', C, C’ be six pelitstof a rational
quartic curve in space of four dimensions; lefNE, M, N be the
points where the chords, 4.4 CC', of this/eurve, are met by
their commdh™ raétlksl{%lgfgﬁa} ;y' et L, fl*i,"’, i{’ e, rcsl;cctivcl\', the
harmonie conjugates of L, M, N in regatd o 4, 4"; to B, B : and
to C, €’; and denote the plane L'M'NJby w. By applving the
transformation of Ex. 6, with 7 an@i as fundamental elements,
t_he given quartic curve gives risesdo another quartic curve having,
likewise, 44', BB, CC’ as chowds.’ Prove that any plane, contain-
Ing one of these chords, which® nicets one of the two curves, also
meets the other curve (thKSecond point of meeting not correspond-
Ing to the first, howetdr) by the transformation in question).
{James; Proc. Camb 5 Phil. Soc., xx1, 1928, p. 684.)

The associated\line of a get of five is met by all planes
meeting the figst” four lines. We return now to our original
point of view; %" which we suppose four non-intersecting lines of
general pgguﬁon to be given, say @, b, e, d, and prové_ that all
planes ,“‘gﬁh meet a, b, ¢, d also meet the associsted line, e. It
“];111 ‘appe r that there are o2 sych planes, It will also appear
thatef such planes, there are two which pass through an arbi-
raty point, 0, of general position. For some positions of @ these

%o planes coincide; t_hfe locus of such puints € is of great import-
ance. = For some- positions of O the number of these plancs is
infinite; fn}- instance when O is on the associated line e. TFhe
Ercof we give does not

. use the Propositions of Inci
Ut Tequires Pappus’ theorem, positions of Incidence aloue,

earnesy o llltel'pqlate here some remarks in regard to a

poini-gone; and in regard to an &, which we shall eall a quedrie

associsted conception, that of drie fine-
cone. I s T ption, that of a quadric fine
o opace of three dimensions the deal of o conic, considered as the

envelope of its tangent lines, which lic in g plane, is the guadric cone, or
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conical sheet, considered as consisting of its generating lines, which pass
through its vertex. In space of four dimensions, lying in a particnlar solid

in this space, woe may have an ordinary qnadric sorface. This may be con- |

Gy

sidered to consiat of its two sets of generating lines, of which any line of. ~

either set meets all the lines of the other set. The dual conception, in the
space of fonr dimensions, will be that. of two sets of planes, all passing
through a point, say 7, of which any plane of either set meets every plane
of the other set in a line, passing through V, while two planes of the same
set meet only in V. For the original figure, of a quadrie surface lying in a

solid of the fourfold spaece, there pass, through every general line in this ,

solid, two planes each containing two lines of the quadric surface; this ling
alzo conlains two points at each of which two of these four generators meat.
Thus, in the dual figure, an arbitrary plane throngh V contains two lines)
passing through 17, sach of which is the intersection of a plane of ghevset
with a plane of the other set; and there are tweo solids containing this\plane,
each of which contains two of the four planes'se arising. Tt is théaggregate
of poinis lying in these two sets of planes which we call 2 quadsic\petni-cone,
the point V being the verfex. In the original case, of the {uadric surface,
two generating lines which intersect determine a point of\ihe “surface, and a
tangent pl{me ;l s0, in the case of the point-cone, two gegeraling plauesh W}fich
mect in a line lie in a solid, ealled the fangent solid ma‘ int-cone, the line
of interscction of the planes being the lne 9f oo %'pof}ﬂ}sa E%Eé&‘é'blid
with the point-gone. There are % tangent solide,'each passing, with its line
of cuntaet, through the vertex, It iz elear thit tle generating planes of the
oint-cone meet an arbitrary solid in the genevating lines of a quadric surface
ving in that solid. Conversely, a pointscone is generated by the Plam'ls
which join the generating lines of a gquadwic surface to a point, not lying in
the solid i which the quadrie surfacedias) .

We may equally consider the ddaly in space of four dimensions, of the
tangent liues of a couic. This will Gonsist of ool planes passing threugh a
line, say 7, two of these plancsd¥inly in an arbitrary solid which contains the
Fne "It is the ngpregate(dfthe points of these ﬁ)]anes which we call a
quadric Hnre-cone, I boing fhe’axis. A solid throngh the axis may contain
only oue gencrating pl@li\) " the quadric line-cone; the solid is then said to
touch the line-cone, af éyery point of this plane; of such fungent-sofids there
are =l The lines ¢ section of the generating planes of the line-cone, with
an arhitrary solidf we the generzting lines of a quadric conieal sheet, Iy:mg
i this solid, wHpse vertex is on the axis of the line-cone. Conversely, a line-
cone cr)nsisi;tdﬁ‘the planes joining a line to the points of a conic whose plane
dorefa not mep “lie Jine. . .

The gepigral homogeneous quadratic fanction, of the five eoordinates which
are appropriate for space of four dimensions, can be written, 1n infinitely
Many Ways, as a sum of squarves of at most five indepemdent linear functions
& coordinates (ef. Vol. o, p. 15). When this sum consists of only four
ShuAres it represents s poiut-cone, when equated to zero; the line-cone 18
obtained when the number of these squares is three; if the number ig two
the line-cone degenerates into two solids meeting in a plane. ) .

. Any solid, passing through the vertex of a quadrie point-cone, meets ‘F]llﬂ
It » conical sheet. The solid meets the two generating planes of the point-
foue which lie in any tangent solid, each in a line, these twollmes being
generating lines of the conival sheet. If the solid contan the l{ne of_ inter-
section of the two generating planes, then its plane of intersection with the
tangent solid, which touches the point-cone at the poiats of t%n_s line, is the
tangent plane of the conical sheet ut the points of this line. This is clear by
Tfemarking that the tangent solid of the point-cone is that contamning the
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vertex and a tangent plane of the quadric surface in which the point-cone
meets an arbitrary solid. Similarly if a solid be drawn through the uxis of &
‘line-cone, this meets the line-cone in two planes which coincide when the
solid is a tangent solid. Further, the tangent solids of a point-cone which
pass through any point, not lying on the cone, are the tangent solids of a line-
cone, whoso axis joins the point to the vertex of the point-coue.

Resuming our discussion, let, as before, &, &, ¢, d be four non-
intersecting lines, in spacc of four dimensions, of which (he trans-
versals of threes arc &, ¥, ¢/, d'; and let ¢ be the associated ling,
common to the four solids [a, &', [d, 8], (¢, ¢), {d, d']. Let Ede
any point of the line ¢; then, as d’ 1s the fransversal of «, b, 4, the
plane Ed’ meets these lines; and this plane meets the ].I:I:l(_‘.s.(z, he-
cause ¢ is in the solid [d, d”]. Thus, by similar reasonig@ahy one
of the four planes Ea', B¥, Ec, Ed mects, in a lingothrough E,
every one of the four planes Ko, Eb, Ec, Ed. Fhercfore, these
Planes me{et an arbitrary solid in two sets of fouxNlines, belonging,
respectively, to %@ wo sets of generators o%a uadric surface,
Thence, th%‘ﬁg d ) ac%lrllbﬁacl %?gﬁﬁgzn infinity 0 ’p]rzlmcs cach meet-
ing all the lines a, b, ¢, d, these heing the ’ﬁlanes, of one set, of a
quadric peint-cone, of vertex E: as wel\is an infinity of planes
cach meeting all the lines @, ¥, ¢, di\ Conversely, as a line meet-
ing three generators of the samg(system of a quadric surface,
equally meets all the generatorsof that system, it follows that a
plane which meets ¢ and meets any three of the lines a, 3, ¢, 4,
11‘kew1se meets the fourth. ,Wec have seen, however, that the five
lines a, b, ¢, d, ¢ are symmwebrical ; thus any plane meeting a, b, ¢, &
also meets ¢. The argusyent, as assuming the last quoted property
of a quadric surface,,%zaacnds on Pappus’ theorem.

Next, let 0 be.any point of general position. If any point, P,
be taken on thaliné d, a planc can be drawn through O and P, to
meet the lines.w; 3, this eing the plane through OP, which con-
tains the tratisversal of the three lines OP,, a,b. If this transversal
meet “’\b\ P, and P,, respectively, this plane can also be described
as thel 'E]ame through 0 and P, which mcets & and d ; for the line
P,Py3s the transversal of the three lines OP,, b, d. Consider the

4 im:e. in whlc_h the solid [4, #] is met by the plane Od; as P, varies
ot d, the lines OP, and PP, meet iy a point of this line. Thus
the ranges (P)), (P,) arc related. We can similarly construet a
plane through O and P, which shall meet the lines ¢ and d ; if this
planc meet ¢ in P/, the ranges (1), (P) are rclated, as P, varies

on & Thus the ranges (P)), (P/) d lated. There are
therefore, in eneral, two sttt e p e Telate hi ' ri
Py ot f%‘ T posttions of P, on g, for which P, an

. s is so, there is a plane throuch © and Py
Ehlchnﬁl%ats b, ¢ and d. There are then,Pin gcneral,g two planes
rough O which meet q, 5, ¢ d. But these may coincide for par-
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tienlar positions of 0. Or, if three planes can be drawn through O
to meet a, b, ¢, d, then an infinite number of such planes is possible,
and & plane drawn through O to meet three of g, &, ¢, d necessarily
meets the fonrth, 'We have seen that this is the case when O is on
the line ¢; thus, also, an infinite number of planes meeting a, &, c,
d, e passes through any point of any one of these five lines.

The two planes through a gemeral position of O which meet
a, b, ¢, d, also mecet &, as we have proved; let them meet ¢ in U
and T. Then, as we have seen, considering the point-cone of vertex
U, containing the planes through U which meet a, b, ¢, d, andy
those which mect &', ¥, ¢, d', there will he, through OU, a plané
mecting o, ¥, ¢, d’. A plane meeting o, ¥, ¢, d' can, similargr, be
drawn through O7. These are then the two planes whichy by a
similar argument, can be drawn through O to meet &, ¥7¥, d'.

The six systems of planes. There arc six systems of planes,
those of any system being the planes which mechtiie five lines of
one of the six assoclated systems of liqgng%’g%gﬁhqi; A %t_alm is
determined, as the argument shews, by its micrsections” wi two
of the five associated lines; thus the aggrégate of the planes of
each system is o2 Through a general puint, 0, can be drawn two
planes of cach system; ta.%ing two ofthe systems, if o, 8 be the
plancs of one of these through this\péint, and o/, " be the planes
of the other system, there are {Wwo points, 7, U, upon the lme
common to the two associated“systems of lines, from which the
planes are defined, such thab O is the linc of intersection of the
plane & with one of o, }3{;§}" with @, while, similarly, the planes
8, « mect in the line 8. We shall denote the systems of planes
by the numbers 1, 2N,., 6, these being the same as those marking
the systems of assééiated lines, in the scheme given above (p. 114).

It follows thaf, 3t O be such that the planes o, 8, of one system,
drawn through?0, coincide with one another, then the Planes,
o, &, of ahp.other system, drawn through O, likewise coincide. In
this cascdhe plancs of the various systems which pass through O
are six\fh number, one of each system. One of these planes, say
thap(njecting the lines a, b, ¢, d, ¢, will be met in five lines, passing
through O, by the other five planes, these lines passing to Fhe
points where a, &, ¢, d, ¢ meet this plane. But, two planes meeting
in 4 line define a solid; and another plane, which meets each of
these in a line, lies in this solid. Thus, for such a position of O as
now contemplated, the six planes through O lie in & solid. Tt will
be found immediately that there are oo ? such positions of 0, of
which four lie on an arbitrary line; we shall be much concerned
with the locus so determined. . )

The various systems of planes are also of importance in con-
texion with the singular solids described above (p. 115). Each

Q"
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of these solids' can be generated by planes of any one of the six
systems, these forming an axial pencil of planes whose axis is one
of the six lines lying in the solid. More precisely, taking the .
singular solid previously denoted by 123, or 456, this is generated
by planes of the system 1, all passing through the line 237 also by
planes of system 2, all passing through the line 31; and so on;
and, finally, by planes of the system 6, all passing through the
line 45. For instance, if a plane in the solid be drawn throughs,
the line 23, this plane, beside meeting the other five lines which B¢
in this solid, mects the remaining lines, of the original fifteen lines,
which meet the line 23 ; the plane thus meets the lines 12,18, 56,
64, 45 and 14, 15, 16 ; as it meets, therefore, the lincs 12013, 14,
15, 16, it is & plane of system 1. This argument i§ Of general
character. K follows also, from this, that the planés oining any
point, O, of the singular solid, to the six lines lying in the solid,
are of the six systems, respectively ; it will ba¥dund that every
point of ﬂ{‘?xﬁb?&ﬂ%ﬁlﬂﬂli@yiﬁr yeh that tho\kwo planes of any
system, drawn through this poin%‘jcoincide@«it 1 one another,

The planes of the figure deduced Wwith the help of the
symbols. The results in regard to théplanes can also he obtained
with great simplicity by use of the, symibols. Thereby, too, we can
define with greater precision the 4dcus of points, 0, through which
only one plane of each system c;a;h'be drawn.

A p_lane meeting the lines™w, 3, ¢, not containing any onc of
these. lines, can evidently be, defined by three points, one on each of
the lines, with symbolsg,,:i's ectively, of the forms

yB'PC, 2C+zd', ad + nH.
For this plane tg tnket the line d, there must be a syzygy
MyB +2C7) PuleC + 2.4+ v (24 + 9B') 1 p(B +C) +0(C' +4) =0,
cpnnectln'g’:the:se three points with the two points, ¥, @, of the
line d-.\A“S‘ this must be equivalent to the fupdamental relation
betwedih 4, B, ey €7y 3t i3 easily seen that n=g. Thus, any
general plane meeting g, b, ¢, d must contain three points, re-
ONSP'I'?ctl\Fe]y on a, b, ¢, of Symb_ols yB +:C, 2C+ x4, vA +yB’ ,
 Bonversely, the plane of these points coutains the point whose
symbol is :
e sove for DY+ y (C o) 4 5 ad 4 yB),
or, save for sign, gz + 528 - zyR’ ; and this is a point of the
line d. This plane also )contains the point whose symblul is
o B +5C) + (3C + 24') + (wd + yB),
or, save for sign, of, .
In virtae of Ig,-q’-M :g}'ﬂi—i_ =N; and t}
of any two differences of x,

; 1is is & poing of the line &
0, this peint depends only on the ratio
o 2 '
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Now let O be any general point. We can supposé it to have a

symbel
O=E4+ 9B+ EC+EAL + B +LC,

where, in virtuc of the fundamental syzygy, only the ratios of the
differences of £, m, §, £, o', ¢’ are determinate. 'That this point
should lie on the plane containing the three points yB 4+ aC’,
2C+zd, x4 4 yB' requires an identity, in regard to 4, B, C,
4, B, ", of the form ' .
O=n(yB+zC") 4 u(5C+ 2d)+v (2d + yB) +p8, A
where § denotes the sum of 4, B, ..., €. Using this to expregé}
Emy ..., ¢, we can deduce the three equations y
CHE =By =) (- D=0,
2~ O+ y =8 E -
(1= E) (/= ) 0™ (= £) (€ — 8~ (1 + o) (B (E ~ ) =0,
where & denotes (z—a)/{y —z). "The ﬁvﬁ%%ﬂmm“éqﬁ@ﬁls
determine two sets of ratios of x, ¥, 2 whe‘n\’&‘i?s ..., ¢’ are given;
that is, they determine the two planes meeting the lines 4, b, ¢, d,e
which pass throngh 0. These planes ymeet the line ¢ in the two
points o.L — M, oL — M, where gy, are the two roots of the
third equation. We easily find, alsa, that
(=N~ = (¢ — £V — Bfore=(E—n)EF-n)l+o) (Ao
when the two points of theJitk ¢ are given, these are two conditions
for O which will be of interést below. . ,
When the point O ]je&m the line ¢, so that £F—£=0=7¢ —‘f}.=§' —-&
the first equation js\satisficd identically; the second equation has
then the solutighe'= £+ 0, y =9+ 0, 2= §+ 8, where 6 is arbi-
trary. Thus an\infinite number of planes meetin.g a, b, ¢, d, ¢ can
b‘f_dl'&"m Ql‘l;‘hﬁgh a point of ¢ as was seen, This is also so when
0 is on apy ohe of a, 4, ¢, d.
The.gquation of an associated quartic locus. If we put
P> G P ¢ 7', respectively, for n— ', £~ E,E—n,7 &6
751t is easy to see that the third (quadratic) equation, above,
€s equal roots for ¢ provided

(pp+ (g + (7 = 03
this is then the condition for points O from which the two planes
of any system coincide with one another; and may be rggarded a5
¢ equation of the locus of such points. The equation, when
tationalised, is evidently of the fourth order, and there are four

such points upon an arbitrary line,
We may with advantage reach this result in another way, de-

S
N
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fining O b'y means of one of the planes through it which meet the
lines &, b, ¢, d, ¢, and the position of O in this plane. "Lhis is done
by writing the symbol of the point @ in the form

AMyB+2C") + pu (5C + 24') + v (24 + yB).

The other plane, through the point O, which meets a, b, ¢, d, ¢, can
then be shewn to be that containing the poiuts Y B+ 20, 2C+ad),
- d + B, where N

&y ={(u— ﬁ)(,u.z— vy g = (v =AY (pe—A2)™, & =(A— IATRNTEN Y ) e

The conditions that this other plane should coincide with\the\ﬁrst
plane, which are z,/x=y./y =z /z, reduce to one coudition, and
lead, eftectively, to N

A=z t—al, pmy -y, v =2,
- where £ js arbitrary. These values express thdt'the point O lies on
‘a conic in the plane of the points yB + 2C", ICF 2 4’, 24 + yB', of
which the pointsbreuBReai i 8d#ying ¢/ his conic is, in fact,
that passing through the points in  whieh. the plane is mct by the
lines ¢, d, @, b, ¢; for these points are ~§iven, respectively, by the
values 0, ®, 2, y, x of ¢, as is easilyseen. If the symbol of the
general point of this conic be written E4+ 9B+ FC+£ A" +74/ B +£°C’,

®

we see that, with o’ = ¢ — 2, Q¥ — 4, ¥ =¢ — z, we have
E=1Jys, m=1/z, E=1fy, & =1fy's, o' =1/, £'=1/ay.

These values satisfy theNrrational equation above given for the
locus of the point 0\ Lonversely, they lead to the equations
V—amtt=Rr (pg/ gy ~ '), T — g1 5= 2rp (ggf — 11" — pp' )™
Ol -at=2pg (' — pp’ — gg")
T_hus_ theslbens is of the kind called rational, being in (1, 1)
blr?.t%al‘correspondence with the points of a threefold space, in
wh;(\:}\ 2 ¥, & t are coordinates, Through any point of the locus
there pass six conics lying on the locus, each conic lying in a plane
K ofvone of the sIX_systems, and meeting the five associated lines
\vof that system; in the representation here given, one of these
comics corresponds to a definite set of values for the ratios of
&, Y, % the various points of the conic eorresponding to different
values of #. It will appear incidentally below that such parameters,
replacing , y, %, 1, can be taken for each of the six conics. It is
easy to shew that the four points, in which the locus is met by any
line Iying in the plane of one of the conics, consist of the two points
in which the line meets the conic, cach taken doubly. Thus all the

conics, and the fifteen fundamental lines also, may be spoken of a8

being double upon the locas. We shall denote the locus by 2.
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Ex. 1t is easy to represent the points of the six conies that
pass through any point, 0, of this locus; incidentally there arises
thus a proof that the six points, on one of these conics, con-
stituted by @ and the points where the conic is met by the
associated lines, form a range related to that of the corresponding
points on any other conic, if the points be taken in proper order.
A geometrical proof of this is given below. More Frecisely, taking
the scheme given above (p. 114), of the six sets of five associated
lines, let each entry be supposed, now, to mean the point where
the line, given by that entry, meets the proper plane of thesix’
drawn tlirough O ; and imagine the point O supplicd as the diagonal
element of every row of this scheme. Then the points of.the six
plancs through O form related ranges, upon their respective conics,
when taken in the order given by this scheme. This éanbe shewn
by choosing a proper parameter for cach of the 3x conics, and
shewing that the six ponts in question arise, on ®H'the conies, for
the same values of the paramcter. See, also, pi31, below. )

To put the results in concise form, let%;’vﬁ;‘ﬁﬁﬂ'ﬂl'éﬂ'?ﬁﬁﬁﬁ%}s,
and use ', ¥, ¢, respectively, for 1 —a, P, 1 —c. Also, use the
symbols P, @, B, P, Q, R', respectively; for 4/b¢, Bjea/, Clal,
Aibe, Bjc'a, C'ja’b, where 4, B, G4, B, C" are the symbols
previously used for the six fundamelital points. We have seen that
any point of the locus  is giveibhy a symbol 4/yz’ + ...+ /2y,
where &' =1f -, y =¢—y, #"s¢—x; in particular, suppose that
O arises for the values a,ding, 1, of @, y, % {, respectively. If, in
the symbol Ay’ + ... i@ff‘@’y’ say O, we replace 2, ¥, x by a, b, ¢,
respectively, the poigtsipon the conie, through O, which meets
the lines ¢, d, a, b,,chare given by varying # in the symbol

(t—a)*a @PE) +(t— b b B+ P)+(—o*c P+Q)
as we have segn’; the six points donsisting of O and the points
upon the livtes ¢, d, a, &, ¢ arise for the values ¢=1,0,%, 4, 5, ¢,
respectivdly’ If, in the general symbol £, we replace 2, ¥, & b,
respectively, by ¢ —a, £ — b, ¢ — ¢, £ — 1, another conic 1s given by
varyiug ¢ in the symbol thence arising, which is

G—a)yra (@ +R)+(@E—b bR +P)+ (-0 (P +&)s
this conic mcets the line e, goes through the point 0, and meets
the lines &, o/, &, ¢. These oceur, respectively, also for the values
t=1,0, 0, a, b, c. Again, if, in the same general symbol 0, we
replace a, 3, 2, ¢, respectively, by a(f—aj™, b(t—0)" clt— o
{¢~1)7, the symbol thence arising, namely

(=) (P + PY+(— )7 (Q+ Q) +(E -0 (B+ B
gives another conic as ¢ varies; this meets the lines d, d’, goes
through the point O, and meets the lines Z, m, n, these occurring
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for the same respective values, =1, 0, %, a, b, c. Audif, in the
same general symbol, we replace @, ¥, %, %, respectively, by ¢, 8, ¢, 1,
the symbol thence arising,
PiP+(1-)"d(R+Ry+t7a( +R)
likewise Tepresents the points of a conic as ¢ varies; this conie
meets the lines a, a, I, goes through the peint O, and meets the
lines 7, ¢, for the same respective values, 1, 0, o, «, b, ¢ of &
Similarly if, in the same general symbol, we replace @, 3, %%,
respectively, by 4, ¢, ¢, 1, the symbol thence arising, .
t—lb(R: + P) + Q 4 Q* "I'(]. . t)"l b-’ (R + P-), \,\ } N
represents the points of a comic, mecting the linesyfy &, m, 1,
passing through the point O, and meeting the line @, for the same
respective values of # Finally, if, in the same gencral symbol, we
replace x, y, #, ¢, respectively, by a, b, ¢, 1,nthérc is a conic, of
points given by
VLY PR o (P @Y+ B + B,

which meets the lines ¢, ¢', n, ¢, p, and’g);as throngh the point 0,
for the same respective values of £. ()"
‘ The tangent golid of the guartic locus =. When a locus,
in space of four dimensions, J8miven by a single cquation, i
coordinates X, ¥, Z, T, U, sapF (X, ¥V, Z, T, U) =0, it is easy {0
prove that the lines dravqp‘thi‘ough a point (X, ¥4, Z;, T,, Up)of
this locus, which meet<the locus in two coincident points here,
generate a solid,ca;ll'qd,}he tangent solid, whose equation is DI = 0,
where D denotes fsg& ‘Operator X0/6X, + ... + Ud/aU,, and #, 15 F,
‘Vlt_h X, ... substituted for X,.... The lines through this point
which meet the-Tocus in three coincident points here, lie an A
conical sheet,"0btainable as the intersection of the tangent solid
with the'fas?) quadric given by D*F,=0; while the lines, through
thls‘iﬁlﬁta meeting the locus in four coincident points here, are the
six{which are the intersection of this conical sheet with IFF,= 0.
When, as in what precedes, we use coordinates &, #, ..., §s $i¥ 10
:")lur'?ber, of which only the differences arc effective, the operator
) "D, it ean be scen, is replaced by £3/3, + ...+ L3/t Hence it
| may be directly computed, by forming the rational qu uation for 2

{rom L("I - & ("G"-_" C)]%-i- ... =0, that the tangent solid i_Jf the

ocuis 2, at the point O, or 4fb¢ +... 4+ (/' has the equation
- -bc‘g'+m’n +ab’f—Vet —can’ — a'bf =0.
I‘hlS. equation, hof"e"erg is easily obtained otherwise, by first
proving that any line, in the plane of any one of the six_conics
of .gassmg through 0, discussed above, meets the locus in t¥0
coincident points at each of its two intersections with the conics
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and thence inferring that the tangent solid of the locus, at any
point of onc of these conics, contains the plane of this conie. For,
the general solid, through the plane containing the three points
WB +eC’, ¢C 4 ad’, nd + BB, bas the equation '

b(t—c) E+c(t—a)n+a(f—b) {—c(i=D)F —a(t-cyi —b{i—a)t'=0,

in which ¢ is arbitrary, as is quite clear. The value of  for which this - "
passes through the point O is £=1: and the equation then agrees
with the above. It is verified at once, moreover, that the tangent N\
solid, as given by this equation, contains the six conics Passing,
through the point @; it is the solid in which the six planes of./)
these conics were proved to Jie. In passing, it may be remarked
that the tangent solid contains the tangent lines of these conics at
the point O, these being the lines through this point which meet
the Tocus = in four coincident points there; these six Jines'lie on a
quadric eonc ; it will he proved that the six planes{atich a quadric
cone. : : \
Ex. If we put u=¥d, v=ca z@:-""&?ﬁ“;dﬁj’r&h@"@r wheg-ie'a,
w' = — a'h, the equation of the tangent solid; a8 given by

uE + on + wi+ w'E + o'y F =0,
with the two identities

utvtwhu +0 +o S0 wow+urw =0
Converscly, the point of contact depends on the values a, b, ¢
expressed by .“<

4 i 3 '
b 0 0+ ), B )4 9) €= = (W N+ ).
The equations of the singular solids. The tangent solid at
a general point of, $ie locus 2, which, as we have seen, is capable
of the equation 5{(35'— R E4 ... —(F—2) gyt =0,0r :
y=(§ —\E'M’m'(?}"??’) +ay (§=1)

N +te (o — O +ty (L =Bz E —m) =0,
meets $Hedlocus 3 in a quartic surface. T'here are, however, ten
tangeht)solids for which this quartic surface reduces to a r'epeated
quiad#ic surface; thesc are in fact the ten singular solids discussed
{p. I15). They arise for the respective values of 2, y, %, ¢ given by

W0, 1, 2, 0), (z, 0, 2, O), (2, 7> 0, 0), (1,1, 1, 0),
(0,1,1, 1), (1, 0, 1, 1)_, 1, L0 1),
(z, 0, 0, t), (03 , 0, t), (05 0, % t),

and have the respective equations

E'“E’:-U’ "i““"??’=.0; g_é”:os E+"?+€_§F_ﬂ—g’=0’
n-t=o, = t-£=0, £-v=0
7—¢=0, ¢ -E=0, g—n=0

B. @. 1V,

-
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For instance, the solid represenied by the equation % — {" = 0 meets
the locus % in the repeated quadric surfuce given by

({-EY - -1 -mF=0,
as follows from the irrational equation of the locus. But the

equation is capable of other irrational forws ; for example, two of
these are

[t ) (= O+ [ =) E=EP+[E- O (E- =0,
¥ ¥ ¥ 2 f F l
UE+g+E—F - —E)E - +[E-EV(E =] N
A =B E -]
as may be verified by the parametric forms which have been given
for the general peint of the locus. These shew {fiat the ten
particular solids do each meet the locus in a repéwted quadric
surface, )

That these particular solids agree with thelsingular solids as
previously wefinethr mapribenodeinverified hw shewing that these
quadric surfaces contain the lines, of the griginal fiftcen, which are
characteristic of the singular solids. \It)appears that the solids,

arranged as above (p. 129), are in fack the singular solids given
by the respective notations RS

124, 0r 856, 125, or 364,00 126, or 345, 123, or 436
254, or 156 235, or 146 236, or 145
134, or 256 A 135, or 246 186, or 245,

Beside the six lines, fromivthe original fifteen, characteristic of any
one of the singulag{solids, there are, upon the quadric surface
lying in this solid, infinitely many other lines, which, thercfore,
als'a lie upon thedocus 5. ~The fifteen original lines are distin-
guished from\thése by the fact that they are double lines of the
focus ; everyline drawn through a point of onc of the fifteen lincs
has tvwif.‘its four intersections with ¥ coiucident at this point.
- Thelnitersections of a tangent solid of 3 with the fifteen
fundamental lines. We consider the tangent solid of the locus
. 2nt o point 0, and the fifteen points in which this solid is met
by the fifteen fundamental lines, denoting the intersection with
the line 12 by (12), and so on. We thus have, in all, sixteen
points in the tangent solid. We also have sixteen planes in the
tangent solid, constituted by the six planes, of the diverse systems,
“_rh“:h pass ‘thruggh 0, and the ten planes of intersection of the
singular solids ‘_ﬂth the tangent solid. Fach of the six planes, in
the tangent solid, through 0, contains six of the points, namely ¢
and five points on the associated lines which meet this plane.
Each of the ten planes, in which the tangent solid is met by the
singular solids, likewise contains the six puints lying on the lines
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which characterise the singular solid. And six of the planes pass
through cvery one of the sixteen points. This has been seen for -
the point O. For the point (12), for example, these six planes are
the interscctions of the tangent solid with the singular solids 123,
124, 125, 126, all of which contain the line 12, together with the
two planes, of systems 1 and 2, which lie in the tangent solid,
through O: for these two planes meet the linc 12 in the same
point, which must lic in the tangent solid at 0. But it can be,
shewn further that the six points, on any one of the sixteen plancs,
lie on a conic, and that the six planes, through any one of the
sixteen points, touch a quadric cone; and also, that the rapges of
six points on the conics, and the sets of six tangent lanestef the
cones, are thirty-two related sets, if the elements be tal?en“%h proper
order, With the indices 1, 2, ..., 6, this order can b&specified by
a symbolical rule which is of great simplicity. )

Before indicating the preof of these statenjends” we make two
remarks : (1) If two triads of points upon asconic be considered,
cach with its three joining lines, the siﬁ“{]@ﬁﬂéhtﬁﬁﬁﬁlﬁf&bﬁic;
aud, among the tangents of this other)¢opic, these joins are a set
rclated each to its opposite peint on its 0wn triad, the peints being
regarded as belongivg to a rangevef ‘the original conic (Vol. 11,
p- 29, Ex. 7)5 (2) The line which”joins any two of the sixteen
points of the tangent solid, issalSo the intersection of two of the
sixtcen planes lying in this sbhd. For instance, consider the line
Jjoining the points (12), @8) This lies in the plane of system 1
‘through O, and also lie§ I the plane (123), in which the solid 123
{or 456) meets the*tangent solid. Or, agsin, consjder the hlne
joining the pointst12), (34). This lies in both the singular solids
125 (or $46) apd?126 (or 345), and, therefore, in the planes, (125)
and (126), in Shich these solids meet the tangent solid.’ )

'The praoflof the statements made depends on the following
circumstanee: let the six points, in one of the sixteen planes, be
divided ihto two triads, in any one of the ten possiblc ways; then,
amoug* the ten remaining points, which do not lie in this plane,
Alere is one which is such that the six planes through this point

géntain the six joining lines of the points of the two triads. To
prove this, take, first, the six points (28), (81), (12), (56), (64), (45),
lying i the plane (123), ansing from the singular solid 123 (or
456). These six points lie on a conic because the six lines in the
singular solid lie on a guadric surface. "The join of (31} g—nd (12)
lies on the plane of system 1 through O3 and so on. Thus the
six planes, of the systems 1, 2, 3, 4, 5, 6, thm'-lg}} 0, touch &
quadric conc; and further, as tangent planes of this cone, they
are related, in this order, respectively to the points of the conic,
in the order taken. Take, next, the same six points, but arranged

9—2
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as the two triads (31), (12), (56) and (64}, (45), (23). The six
Joins of these then lie on the six planes passing through the point
{14). Tor instance, the join of (12), (56) lies on the solid 124
(or 856), which contains the line 14, as well as the lines 12 and 56 ;
in the same way, the join of (56) and (31) lics on the solid 314
(or 256), which contains the line 14, as well as the lines 56 and 81 ;
and likewise, the join of (81), (12) lies on the planc of system 1
. through 0, which also contains the point (14). The other tria,ci
may be similarly considered. Then, first, we have the result that,
the six points {81), (12), (56), (64), (45), {23), in the ramueof
points of the conic on which they lie, are related, respectively; to
the six plancs, through the point (14), obtained in ordée/by, the
solids 124, 814, the plane of system 1 through O, thessolids 145,
146, and the plane of system 4 through O, these plithes heing con-
sidered in the series of tangent planes of the.guadric cone which
they touch. But, second, rearranging the pamté, and using the
result found bef;%ei\‘, we, see theﬁ fhe planes through O, of systems
1, 2, ..., 6748, Te5pectively, Tetated to thersix planes (4), (124),
(184), (1), (145), (146), through the goint (14). And we notice
that the notations for these latter sixyplancs are obtainable by a
symbolical multiplication, of thefgsv?nf)ol 14, respectively with
I, 2 ..., 6. Now consider, figally, the points in the plane of
system 1 through 0, taken in the two triads 0, (12), (19) and (14),
(15), (16). 'We shew that the' joins of these triads lie ou the six
planes through the poini{(23). In fact, the three joins (12), (18);
(18), 0; 0, (12) lie; ‘re}pectively, on the solid 128, the plane §
through 0, and ¢ é\plane 2 through 0; while the three joins
(15), (16); (16)2(19); (14), (15) lic, respeetively, on the solids
R34, 285, 236, yAssutning that i has been provcﬁ as above, that
the six planes Jthrough (23), so arising, touch a quadric conc, and
are related,\respectively, a5 planes of this cone, to the planes
thm“&% F)’,’Of systems 1,2, ..., 6 (these heing the numbers obtained
by sym} olical multiplication, with 23, of the notations for the six
plaiies), it follows that the points 0, (12), (13), (14, (15), (16), of
”~ plane 1 through 0, lic on a conic, and are related to the planes
"\ Hhirough 0, respectively, in the order taken,

We ¢an thl_ls take the six points of any one of the sixteen planes,
as also the six planes through any one of the sixteen points, in
such an order that they are associated, respectively, with the
nurnbers 1, 2, ++vy 8. The association is obtained, in the former
case, by symbolical multiplication of the symbol of the plane,
Z?}:;ilet'tIVE!y : With 1, 2, .6 ; and, in the latter ease, of the symbol
the f:’p(;mii.- Thus, for example, the number 1 is associatea_wlfh
i thptllln (12) 1y61ng in the p ane 2 through 0, and is associated

14 the point (23} of the plane (128), in which the tangent solid
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is met by the singular solid 123 (or 456); or again, the number 1
is associated with the planc 8 through 0, regarded as a plane
through the point (13), and is associated with the planc (184),
through the point {34). This association enables us to make the
sixteen points (as also the sixteen planes) correspond in pairs, in
any onc of fiftecen ways. For instance, take the two nuinbers 1, 2.
From any point, we may pass, with the number 1, to a particular
plane throigh this point: and then, with the number 2, we may ,
pass from this plave to a particular one of the six points which it
contains. The second point is evidently obtained from the first paint
by symbolical multiplication with the numbers 1 and 2, in efthér
order; for instance, if the first point he (45), the second is\(36).
What lLias been said suggests the arrangement of thedsixteen
points in such a scheme as that adjoined. . A ;
This is typical of ten such schemes, of which (14),-Qs), (16), (23) |
the other ninc are obtainable from this by | @&hN25), (26), (31) |
interchange of any one of the numbers I, 2 3, 34)1_ 85), (36), (12)
with auy one of 4, 5, 6. If, in this sclié ,d\%%,‘%éﬂ‘ﬁtﬂ)fg"a ‘
we take any element in the last row, ¢x i
the last column, other than O, the othér)six elements in the same
row and colunn, as this chosen, are the points lying in one of the
six planes through 0. But, the goints, given by the elements of
the scheme, which are in the sayie row and column as any of the
other ten elements, are thosg iittone of the ten planes arising from
the singular solids. Furth{r, Sonsidering the elements of the schewme
as consisting of the faur)tetrads which are in the four rows, the
points given by any $we of these tetrads are at once seel to be
Moehius tetrads, dhscribed to one another (Vol. 1, pp- 61, 91)
Yor instance, tqlql:}g the first and second rows, the point (14) lies
in the plane ({' “the points (25), (26), (81), since these four points
are in the.gipular solid 256 (or 514); similarly, the point (25)
lies in thesame planc with (14), (1 6), (28), these four points being
in theingular solid 146 (or 285). The same relation holds for
the fou tetrads given by the columps of the scheme. Moreover,
4 #hérd is a quadric surface in regard to which the four tetrads given
by the four rows are all self-polar; and, taking the four lines
joining elements in the same column, in the first two rows of the .
scheme, and, likewise, the four lines joining clements in the same
eolumn, in the last two rows, these eight lines have two common
transvetsals, which are generators of this quadric. By taking the
four rows in two pairs, in this way, three sets each of two gene-
rators are obtained}? These are all of the same system, of generators
of the quadric, and the two of any set are harmonic copjugates In
regard to those of either of the other two sets {cf. Vol. i1, pp. 68,
138, 148). . |
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" The intersections of a tangent solid of = with the planes of
the six systems. In spacc of four dimensions, a planc meets a solid
in a line. Thus the w? planes of any one of the six systems,
which have heen considered, give rise to & ® lines in the tangent
solid of X at a particular point, 0. As these planes all mect three
lines, not lying in the tangent solid, whose transversal does not lie
in this solid (and this in various ways), we infer that the o ? lines,
obtained in the tangent solid, belong to (at least one) tetrahedral
complex of lines in this solid (p. 82, above). Through any géneral
point of the tangent solid there pass, we have scen, two playes of
any one of the six systems, giving rise to two lines of tlie Witem
considered. We may expect, therefore, that the lines’ of this
system belong also to a linear {as well as to a tetraheftval) complex.
This we now prove, in a direct way, which also shigws that the six
linear compleses so arising are mutually ecenjugatc or apolar
{cf. p. 42, ahove). General results in regaxdMo quadratic con-
gruences oﬁ,@(}%@r&gﬁ%&yb@ Wn(Chap. w1t} the sixteen points
and plancs we have considered, in wh t,}recedes, then arise as
singulor points and planes. The prdof'we now give is, in part,
algebraic; another dircet proof, of (@)synthetic kind, arises below
{p. 155), from a dual point of view, )

Consider any particular ling\if the second system, chtained by
the intersection of the tanggnt solid with the plane of the second
system containing the thrée points 7B + £C, {C’ + £4, EA" + nB.
We first prove that apy Nne of the first system which mects this
line, also meets aﬂ,ﬁ,th}r determinate Yine of the second system.
Through any pOiB(,\sﬁy P, of the given line of the second system,
there pass, we Haye remarked, two lines of the frst system ; we are
o prove that hoth these meet another line of the second system,
whose'determ\iuation is independent of the position of P upon the
first line? The plane of the second system, (£, #, &), reforred to,
mee the'line ¢, or 12, in a particular point, say '3 throagh this
poitity here Pass @ ! other planes of the second system, meeting the
tangent solid, at O, in the generating lines, of one systemn, of a

wqu?.dnc surface, as we have scen, Through 7' there pass, also,
) @ planes of the first system, giving risc to the other system of

generators of the quadric surface spoken of; onc of these passes
through P; it meets all lines of the sccond system which Ee on
Planes through 7. There is through P another line of the first
system; this line, in fact, is not on & plane of the first system
passing thr_ough T, and does not le on the quadric surface, in the
tangent solid at 0, obtained by planes through 7. This line mects
this quadric surface in another point, say #”. Through P’ there
passes a generator of the quadric surface, lying on a plane of the
second SyStCIl'l through I‘; thiS iS Of the sume Systeln as the gene.—
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rator, (£, 7, &), on which P lics,. We shew that this second
generator, through P’, depends only on §, 7, § and not on the

osition of P upon the genevator (£, m, &), 'This second generator
is then met by both the lines, obtaincd by planes of the first
system, through all poiats, P, of the generator (£, 7, {)-

For, the point common to the plane defined by the points
B +¢C, ¢C' + EA, A" + 1B, and the plane, of the first system,
defined by the points yB + (', 2C +ad’, 2d + yB, is the point
whose symbol s : :

2 E (@B + (O +y7 iy (€ + EA) + 2L (EA +9B), O
its coordinates, relative to 4, B, C, 4', B', C’, being S\

yoInEs i n B EE @ gl ON
{he condition that this point lies on the tangent solif{at’ (), whose
equation is b¢'X + ... = HeX 4 ..., where @ =1 —@féte., is
g (ha— qy) + o8y (oo — az) + {72y~ bx)= 0.
This assumes that the two planes do niot ft JHDe by OXHAR s,
do not meet the line ¢ in the same peiabs for which the con-
dition is QO
E(y - )+ 7 (s — ) 28 —) = 0.
In order to prove what we havestated it iz thus neccssary and
sufficient to prove that, if theseltwo conditions are satisfied by one
sct of values of & #, {, thaiNthey are satisfied by another set of
values, which depend on g, ¢ only, and are _independent of &, 1, 2
Such another set, &, q\;\ ) 3s, in fact, given, in terms of the former
set, by N :
E(g— )= =), m(E—-H=Fa-&),
RS, G(E—m="¢ (E —na):
For the forgfier’ condition is equivalent, with proper values of Ay s
fo the t}y%e“
R ,ff?a’ = A+ par, g =R +pbyt, =4 e
kﬁdi]\fg to 9 = ¢ =p by — ez ), ete. T}.lqs, w'{lat we wis_h
verify as to &, m, & satisfying the first condition, is clear, this
being that the sum of three such quantities as
w (bs—cy) (7 = £ 2 = L7
vanishes. The latter condition, for proper p, oy _is equlval?nt to
the three equations £ = pa + o, cte.: what ¥e wish to verify for
this is thus the obvious fact that the sum of & (m—)m{E- &)

and, & {E — ) vanishes, ;
Tt can now be farther verified that, if we form the same functions

of £, m, &, that £, m, & are of & m, & we shall obtain the

Q!
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quantities £, n, {, save for a common factor, These are then
obtained from £, m, & just as £, #, & are obtained from &, , L
- Whenee, considering, first, only those lines in the tangent solid
at 0, that lie upon planes of the second system which pass through
a particular point of the line ¢, these being the gencrators, of one
system, of a particular quadric surface, we have shewn that all
lines, obtained by intersection of the tangent solid with planes of
the first kind, meet this quadric surface on gencrators which agt\
pairs of an involution of these generators, or, are themselves geng
rators of this quadric, of the opposite svstem. Trom this it f6llows
that these lines of the first kind belong to a linear complex(af'lines,
in the tangent solid at O (Vol. 11, p. 67). By parity of Yeasoning,
considering now all the lines, in the tangent solidgabbained by
planes of the second kind, these will also belong tofa linear com-
})_lex. But further, as we have shewn that alllics of the fHrst
ivear coml:lllex, which meet any particular linewdi*the sceond linear
complex, likewise meet another line of the sgeond linear complex,
it follows viay b E'f}'fhprﬁf’y‘gsl;}ﬁfl{ fted lined, of the sccond complex
are pelac lines of one another in regardibe/the first comples. Thus
either eomplex consists of pairs of Jihes which are polar lines of
one another in regard to the othel complex. Whenee it follows
that the two complexes are apdlar, or conjugate (Vol. 1, p. 65.
Above, p. 42). A similar a.rg‘uinént applies to any two of the six
systems of lines in the tamgent solid. The fact that any two of
the lincar complexcs aré “conjugate involves the fact, remarked
above (p. 183), that, we_gan associate together two of the sixteen

points of the tanger}t\}ulid, in one of fifteen ways: the converse is
also true, \ ’

Ex. 1,

L Taking“any two points, P, @, given, relatively to

» Cylgspectively by
PEX A+ +Z/C, and @Q=Xod + ... +Z,C",
and p\u&biﬁg
N Si=gm &~ X))+ 22 (Y - ¥V) 4 ay (2, - Z.),
GO UmeW -2y vy (8 - X)) 1 a (X~ Y.,
wﬁth a COl'r.tzspoml.lng meaning for §,, U,, prove that the planes of
t}f‘ fizst kind, Joining jr.hlree points yB + 2C", 5C + xA’, 24 + B,
which meet. the line Joming the two points P, @, are given by the
valrz(lles of @, 9, » wl}lch satisfy the equation &7, —8,U,=0. Re-
garded as Tepresenting a locus in the plane (a, y, %), this equalion
z‘gpliestants a. cublc curve passing through the four points (1, 0, 0
in’th, t)’ @, 0, 1)’,(1’ 1, 1) i When the two points P, @ are both
o rdi .angent,sihd at O, this point being given, as before, by the
are bo;lﬁtes t(.bc Y {ea’y, ete., the equations 8, + U, =0, 8,4+ U, =0
satisfied by (2, ¥ 2 =(a, b, ¢), and the cubie ¢urve con-
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tains the fifth point (a, 8, ¢). When the two points P, @, not
necessarily lying in the tangent solid at O, are in a plane of the
second kind, being, respectively,

P (nB + LO) + 4 (§C + EA) + 1, (£’ + 9B), and p; (B + £C) +ete,

the cubic locus breaks into two, becoming

[Euysx + oz + fway] [w{(n— O +y (- O+z(E-m]=0, _
where 1 =7, — Qo715 0 =11P, — 73, ete. I the two points satisfy
both conditions, being on a plane of the second kind in the tangel:lt
solid at O, ihe ratios of w, v, w are the same as of a(nc"— L},
b{a' — &), ¢ (E)' —na). Both the ratios of fu, 9o, {w, ands the
ratios of n— &, £ — £, E— 9, are unaltered by replacing ?2.'5"\@' by
£, my &, where £ (g~ O) = o' (ne/ — §8'), etc., as above. L 7%

Ex. 2 Y & n & E, 9, § be the coordinates of (fmy point
relatively to 4, B, €, ..., then independent coordmaﬁ%‘, for a point
in the tangent solid at O, may be taken to be X, ;’, Z, T, where

T = (¢ — a) (ab'§ — 4BL) — (a B) edbpsidibydy org in

and X=(~F, ¥Y=y—o, Z={-F. The tetrad of veference
for these coordinates consists of the fouf points where the tangent
solid is met by the four lines 84, 85y 86, 12 (or 4 m, n, ¢). I&“
then the line coordinates of any ling'int the tangent selid be define
by writing its equations in the forhis

I'T+mZ —nY =0, IX+m' Y +nZ=0,
and we put m\~

L 3}

P=y (b-'\cgit-y(c—a) +x(a—0b),

€@ = yxa\b — ) + zxb (c — a) + xyc (@ — b,
it can be shewisilat the plane of the first system, containing ’chg
points yB + 5648C + a4, x4 1 yB', meets the tangent solid at
in the linc whose coordinates, 7, m, n, Z', m', #, are, re.spectwely,

@ (B2 2@, B (c— a)yQ, ¢ (a—b) 2R, ysP, waP, ayP.
'l‘he§¢j§bord_illates salisfy the equation
A~ +mfl + njd —Ta (b — ¢) —m'b (e —a) - we(a—B)=0,

pressing that the line belongs to a linear conglplex, bheside tgie
equations 2’ + mm' +nn’ =0, U'/a’ +mm' /b + nn' ¢ =0, correspon
Ing 1o a tetrahedral complex. . . .,

Similarly, a plane of the second kind, joining the pointsp B + 54
50+ md, o d + B, if

Pr=a(6—~c)+ cte., and @ =g, za’ (b~ ¢) + ete.,
gives a line whose coordinates are '

P,
ab- €)@, b(" ~a)y8, ¢ (a— b) 28, :%XLPI’ za Py B
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These satisfy the equation

Ha+mfb+nfe-Ta (b—c)—ml (c—a) —n'c (« — 1) =0,
beside I’ + ete. = 0 and #'/a + ete. = 0. Evidently the two linear
complexes thus obtained are conjugate to one another,

Ez. 8. With &, Y, Z, T as in Ex. 2, the points of the quadric
surface, in the tangent solid at 0, obtained by planes of the second
kind drawn through the point §{(4d+ 4 +5(B+ B+ ¢{(C+ C'),\
are expressible, in terms of the ratios of three parameters, z, 7,8
in the forms \

o\
X =(y—=)(Qv—EBp), Y=(z—2)(Rr—Pr), Z=(z—y)(Pps>Q0),
T=A{b-c)QR+ p(c—a)BP +v{a— ) PR ]
where N 3
P=bey—bezs, Q=ca’z—car, R=afgSwhy,
Nmn=b w=f-f v=ERRY

The planeﬁw s aof inds, 1 surfaqe\\eél'respond Lo conics,
n a plane (@, , %E’k?n ‘ﬁtﬁﬂﬁa 'rough“tllé' two points (1, 1, 1),
(@a’, bW, ¢¢’). The gencrators of\the quadric surface, on the
planes of the second kind, correspond.to the lines in this plane
which pass through the second of these points. The planes of the
first and second kinds, defined, réspectively, by :

(yB+2C, xCrad’, x4+ yBYand (4B +(C, (C'+£4, 4 +B),
meet on the tangent solidab 0 if

x"jf:{gﬁi@f,’ ¥ lg=0, x1f=c"c. »

Ee, 4.! If, Instead*of X, ¥, Z, T in Ex. 2, we use X,= Xjd,

Y=Y/ f)-, 2 =2l T =Tja'b¢, prove that the intersection of the

locus 3, with t}}e\ tangent solid at O has the equation P*+@"+R!=0

where B4 (b—c) X, [— a'T\ja+ (c — a) 7, — (a—b) V)],

with QI%IM values for @ and B. "This equation represents a qUﬂTtiU
sut:fa;ge. It has sixteen double points, namely at @, and at the-
w\f”‘.h'ts \f‘herc the tangent solid is met by the fifteen fundamental
C infes. These double points lie, in sets of .;ix, in sixtecn planes, each
of which touches the surface at all the points of a conic. The lines
m which the tangent solid is met by the plancs of any one of the
SIX systems, belonging hoth to a quadratic (tetrahedral) comples,
and to a_lmga,r complex, are said to form a quadratic congruente.
As any line in one of these plancs meets the locus 3, in only two-
pomnts, each a pair of coincident points, the lines of the quadratic
congruence are double tangents of the quartie surface. As the two
Planes of any system, which pass through s point of the locus 2,

coincide with one another, the points of the quartic surface are
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these points, in the tangent solid at 0, for which the two lines of
the quadratic congruence, generally possible through any point,
coincide with one another. Any tangent plane of the quartic
sarface meets it in a plane quartic curve, o which six tangeut
lines cant be drawn from the (double) point of contact of the plane.
These arc the six bitangents of the quartic surface which are possible
through any point of it, arising from the six planes of the various
systems through any point of 3. See, also, p. 142, below.

The quartic surface is generally called Kummer's quartic surface.
We return to the consideration of it below (Chap. vix), from the,
point of view of space of five dimensions ; and it will be provedthaE
any quadratic cougruence of lines lies in forty tetrahedral complexes.

Tow. 5. A sct of six linear complexes of lines, in spacé of; three
diwensions, of which every two are conjugate, can he ‘eonstructed
from six arbitrary points, of which no four lie in a(plane. It has
been said (Vol, 1, p. 68, Ex. 26) that, if five poinits ‘4,B,C,D,E,
be taken, in threefold space, in a particular qr%;‘; there 1s a polar
system in which each of these points has,“ﬂ'(rwi Tﬂﬂﬂblﬁlﬁﬂ@}'m
plane thraugh this point which contains the two contiguous points;
so that the five sides of the pentagon ‘ape lines of the associated
linear complex. In this polar systemjthe polar line of the joining
line of two alternatc ponts of this pentagon, for example of the
join 4D, is the transversal, drawh from the intermediate point, K,
to the two sides of the pentagon, 4B and CD, which are contiguous
to the side, BC, opposite tc{E Hence, if 4, P, @, B, C, D be any
six points of the threefald space, and two polar systems be deter-
mined, respectively. b}\\thc two ordered pentagons 4, P,Q,B,C
and 4, Q, P, B, D (wherein the four points 4, P, Q, B are the same,
but P, @ ocenrsity reverse orders), then these polar systems, or the
associated lingdr, omplexes, are conjugate to one ancther, F or, the
line 4P, which'is self-polar in the first system, has, for polar in the

second sydtem, the transversal drawn from Q to PB and AD ; while

this trahsversal, drawn from @ in the plane PQB, is likewise self-
pelapsiit the first system. Namely, the linear con_lplcx, associated
ithJthe first polar system, contains two lines which are polars of
apé another in the second polar system. This is a sufficient con-
dition for the two associated linear complexes to be conjugate
(¢f. p. 42, above, Ex. 1). )
These preliminaries being clear, take, in the threefold space, six
points, 4, B, C, P, @, R. We can then define six polar systems
respectively by the ordered pentagons

B,R @C4; CPRAB;, 4.Q0PBC;
B,Q R CP; CRP 4R 4P&QBEE:
these we denotc, respectively, by &, 8, and o, 8, %, and prove

Q
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that every two of them are conjugate. For this it is sufficient to
prove that the four pairs, (8, v), (8, &), (a, o) and (a, #'), arve con-
Jugate. But, 8, are determined, respectively, by the two pentagons
"4, B,C,P,Band 4,C,B, P,Q; 8 and + ar¢ determined by the
two pentagons B, P, 4,0, C and B, 4, P, Q, B a and o arc deter-
mined by the two pentagons B, B, @, C, 4 and B, Q, R, C, P; while
the two systems «, 8 are determined, respectively, by the two
pentagons B, Q,C, 4, B and B, C,Q, 4, P. In every casce there arg™\
four eommon points to the two pentagons, of which two come in
reverse orders. This proves the statement, by what is said abagsy
Recurring to the scheme given above (p. 183), it will lgtyfodnd
that we may take, for 4, B, C, 2 set of three points iy ond of the
. rows of this scheme, then, for P, a point of another\row, in the
same colnmn as 45 for @, a point of ancther roffin the same

column as B; aud for R, the point of the remaifing row which is
n the sawme column as C,

£z.6. Tu the preceding Example, if the lahes BPC, CQA, ARB
meet inlD,""e:ﬁ‘d;ér)% eﬁﬁﬂtﬁyﬁl&%@ D, th{ points P, @, F he, re-
spectively, (0, g,, 7, &), ( p,, 0, 75, &), (B 73, 0, k), and we take
8., 6, 8, 0 that P O 1o o) e 04

g:7:6, =Piks—Pskz) 71 Paly= Qa:ki':_’ Qkis popn =1 ky — ke,
prove that the six linear co

] mpleXes considered have the respective
equations N\t

I-61'=0, ™~ 0,m' = 0, n—8,n" =0,
BOTLA M 2N =0, —rL 150, M + p,N =0,
\ — M+ k0N =0,
_ where L=i38l M=m4 Gm’y N=n+ 0,0
It is easy to s¢d\that any two of these ave conjugate.
Without Joss of generality, lace

1 . we may replace the coordinates,
Z, o, 2,4, 0f a point, respectively, by iz, my, ng, ¢. Thereby, for
&, 0., 85 we obtain, respectively, mn8, /1, nl#, fm, tm8;/n. Thus we
can_ehoose I, m, n so that 4,9, 8, have any assigned numerical

) ga'[tleé.
S Ex 7. Prove that, in the figure of fifteen lines, whiclh we have

€onsidered, in space of four dimensious, theve are sixty pairs of
non-mtersectmg.lmes, and forty-five Ppairs of intersecting lines. Also,
that there are eighty triads

L T of non-intersecting lines, namely sixty
tnat}l)s lvn-th symbols such as 12, 13, 14, and twent’y triads with
Z)imlito ;:gu;,:fl asf%,‘ 81, 12. These eighty triads correspond to the
s.lgovg(p. rl 35)13 points repr_esented by such schemes as that given

and

L. 8. Prove that if, in the tangent soli s 3 at the
point .O, we take coordinates grll‘g;rl) b;? gf;}}_ﬁ ;’(:u;‘ ; ?-— £,
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Z=t—vy, T=be(E-F)+calp— )+ ab ({— &), for which the
points of reference are the interseetions of the tangent solid with
the lines 14, 13, 16, 28 (or @, b, ¢, d"), then the line coordinates,
of the line in which the plane (yB + 2C', 2C +zd’, 24 +yB’) meets
the tangent solid, are

&—c)UV'W, (c—a) YWU', (a-bHWUV/,

—aUVW, —bV'WU, —cWUV,

where U =g —z, ete, and U'=yc —zb, ete. These satisfy the
equations

I mm +nn’ =0, B'fa +mad (6 + an'fe’ =0,

N
oA\
N\
Ny

and the equation R
Itmtn—a(d—c)ljad—ble—aym' [t —cla— {;)Tn”/‘é’ =0.
The corresponding results may be obtained Whelg\the coordinates
X=vn-8 Y=0—§ Z2=87
and T=8¢ (E—EV+ca {n —.’r}ﬁ)\“’r;ﬂ.%iﬁfiuﬁﬁf}iry,OL*g.in
are taken, for which the rcference puints are the intersections of
the tangent solid with the lines 24, 25; 26, 81 (or a, b, ¢y d) Or

o

when the coordinates N
X=cp—b +cy—~ b’g,:,wY_—_ af —ct +d ¥l — g ete,
T=fPrn—n+E-¥
are taken, for which the xeference points are the intersections (_)f the
tangent solid with tk’@'lines 56, 64, 45 (or 75 ¢ 1) and the point O,
See the following, Example. o
Ev. 9. 'Lake'aset of four tetrads of points, In space of three
dimensions, gf.which every two are mutually inseribed, consisting of
the tetrad/Of reference and three tetrads (0, c,}-l,-—b,-, ), (b— gr,f,au-, 5,3,
(b, —a "D’ﬁ‘r) (@ry by 0) for r=1,2,3, where s+ Op U+ CrCp=1-
Suéh\&t’is éiver: lr)gr the rows of the scheme above (p. 133). Let
Q?ﬁmﬂ@%+@h@m+ﬁ%ww,md1%=@x+hy+ﬁ&h%m-
. §ider any one of the 0 * lines given, for varying &%, by the line
\ \cbordinates
xQ, yQa zQ, azasszu bybyze Py cﬁc3myP1;
these are such that
lan= e {bbs = i’ [CaCas
and C{I=1yar (m-—m) b+ (n—n) e =0.
The linc can be joined to the points of any onc of the four tetrﬁd:-i,
so forming four axial pencils each of four planes. Prove that these

four axial pencils are related to one another. ‘ .
If @, 9,5 be regarded as coordinates.1n & plane, the line coordl-
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nates, equated to zero, represent cubic curves with five points in
common. This is a general result {cf. Chap. vir, below).

Ez.106. Consider any solid, IT, passing through the line ¢, in the
figure of fifteen lines, in space of four dimensions, considered ahove.
The eight lines, of the fifteen fundamental lines, which do not meet
the line ¢, namely a, b, e,d, o/, ¥, &, d’, will mect this solid in points
which we may denote by (a), (&), .... The plane of the three points
(a), (b), (), in this solid, will meet the line ¢; this is a planc of tie
first system, and meets the line 4, in (d). Similarly, the spaints
(a),"(0"), (¢), (d') are in a plane of the second system. Noain, the
points (8), (c),(d"), («'), lying, respectively, on the lines 15,16, 23, 24,
are in the singular solid 234 (or 156), and are in thegplarie in which
this solid meets I1. Similarly for (¢),(2),(d 5 (& ande), (10), (), ().
Thus the two tetrads of points, (@), (), (), (d)and (&), (B, (¢')s (d),
form a pair of mutually inscribed Moebius tetrads.

Using, as before, coordinates £, 9, ..., ¢ xeferred to 4, B, ..., €
put www.&ﬁtﬂfﬁlgvy.x:g?ig - E(s"\z\= E—,

P=Ug +on+ al - cf =t - It

T=be (= £ ca(n )+ ab (£ 1),
Tl:le. equation tP — T =0, for vatying #, is the general solid con-
taining the points 5B + ¢C", (L3 ad’, ad -+ bB'; the solids X =0,
Y= 0’,Z =0 contain, respectively, the lines &, ¢, d’, o’z ¢, a, d', 03
a, bod, . Ttis easy togverify such identitics as

2P +e—a)Za—B) Y] =T ~ (a—b) («—c) (E— )

thus the locus 3, m the space of four dimensions, has the equation
(see the rational form, p. 130; also pp- 138, 158)

[4G-Q&IP —aT 4 (c~ ) Z — (a — b) Y1J? + cte. =0.

TE, herein, we’ replace 7 by P, the equation represents the Kummer
surfaoﬁyin\which the 1 Y q | Tepresel

. locus X is met by the tangent solid at the
D ehiarb,0),the cquation of this tangent solid being 7'~ P —0. The
reférenice points for the coordinates X, ¥, Z, P are (a), (b), (¢), (d')
the line ¢ may be represented by 7'=0. The

; y this solid, I, in terms Oft?he
: ore given by putting, in this equation
{Jor 2, 7ero iu place of 7. The sugrface tl{eI:l arisiéﬁ,g is one (g.tudied
y Pliicker (Geometrie des Raumes, 1868, pp. 163 f.), under the
lﬁ%n:fl 0{. the Meridian Surface. Tt is the locus of the conics touched
a%d ; :tlllnes O.f Ia quadratic complex which meet an arbitrary line;
which ¢ enve.ope of the cones generated by lines of this complex
1ch meet this line. It wil] pe seen (Chap. vir, below) that the

lines of a quadratio compl,

. . e i ines T
In particular, mect g ].mE)jt which belong to a linear complex (of,

! be]ong to a tetrahedral complex (to
forty such). Thus Plicker’s meridian surface may be regfl‘ded a
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generated from the tetrahedral complex #'/d=mm'[B=nn'[C, where
A +B + €= 0, by lines meeting the particular line (Z, m, 0, ', ', #');
jts equation s then of the form
{da (Tt +mz —ny)}% +ete. =0,
as we easily verify, and of many other forms. The surface is of the
fourth order, and rational {Vol. mr, p. 102, Ix. 9), as is, in fact,
every quartic surface in threefold space which has a double line.
If, in this equation, we take p, g, r so that I'=gr, w' =rp, 0 =pg;
put z=pX, y =q¥, s=12Z, ¢ =P and also take a, b, ¢ so that o
a(Bng — Cmr) = dmn, b=a—nfr, ¢= a+mfq, K\ s

it is easily seen that this form reduces to that obtained above.\

The surfacc has the cight points (a), (), .. for double”pyints;
these lie in pairs, (a) and (a’), (§) and (&), etc, upon four Tlines,
lying on the surface, which meet the line ¢ and thete is a corre-
sponding dual theorem. The complete investigation need not be
given here. (Cf., for example, the writer’s Multiplyy Pertodic Func-
fions, 1907, n. 159; and the Note to p. %ﬁ,“kdlm ibrary.org.in

Détermiralf the equations of the congxttelices of lines in which
the solid [I is met hy the planes of the systems 3, 4, 5; 6 The
meridian surface is evidently the Jocus of points from which the
two lines, of any one of these congruences, are coincident; namely,
is the focal surface of the congruence. (Cf. Chap. v1, below.}

Ez.11. 8ix arbitrary lines, of" general position, In space of four
dimensions, are met by five planes. These form an associated
system of planes (as definkd above, p. 118). _ )

For, taking four of\the lines, @, &, ¢, d, as in tl’l(i precedmg
work, consider the glanes joining three points, :yB +2C7 20+ ad’,
2d +yB’ (whichfherefore meet @, &, ¢ d), which are also such as
-to meet {wo otglif arbitrary lines. The condition fO_I“ such a plane
to mect @ Aupther arbitrary line, we have seen (Ex. 1, p. 136,
above), issthat (a, @, %), regarded as coordinates in & plane, should
be the doerdivates of a point of a cubic curve passing through _four
given\points, "L'wo plane enbie curves have nine commor - points.
Zhéve are, then, five other sets of values of (@ % z), and, there-
fove, five planes, which meet two arbitrary lines in addition to
meeting the four independent lines @, b, ¢, d. _Alld, as any cubic
curve, which passcs through cight of the nine mtersgctlons, passes
through the ninth (Yol. m, p. 156, Ex. 6), four of these planes
determine the fifth, (Cf Segre, Rend. 4. ?’alermo, i, 1888,
pp. 45—52.) (Cf. Vol v, p. 85 {4), and p. 276.)

As is indicated in Ex. 1, p. 136 above, the theorem has cxeep-
tions when the six given lines are not of general positions. )

Ex. 19. Given four arbitrary planes, in space of four dimensions,

these are met, by a solid, in four lines. These four lines will lie on
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a quadric surface, in the solid, if this solid 1s any solid passing
through a certain fifth plane, associafed w1l:h‘ the given four, Let
the four given planes be ¢, 3, v, 6; and the four planes each meet-
ing three of these in a line be &, 8, r/, &, the common associated
plane of these two sets being e. Then the solid, drawn through

+.the plane e, meets ¢, ..., &’ in four gencrators of’ the same quadric
surface, of, the opposite system. "These mect the four generators in

the planes @, ..., 8, respectively, at thc points (&, ), ..., (5,8%
which arc on the plane ¢, on the conic in which the plane g mbets

* the quadric surface. Thus the first four generators, ag ligs of

their system of generators, are related with the second (Four “gene-
rators, as lines of their system. PAY

Dually, if a, b, c, d be four general lines, andyw!, ¥, ¢, d' the
transversals of threes of these, and O be a poin¥ 'such that the
planes Oa, 08, Oc, Od belong to a guadric puinb-cone (and, there-
fore, on a certain line, ¢}, of which the E]a wedN\Da’y 05, Oc, Od’ are

+ planes of the gther system. then the gk four plancs meet any
oAl 5,

plane, thtdu d,"n a flat peneil of lines
which is related to the pencil in whighthe second four planes mect
any plane, through 0, which meets a%¥, ', d'. .

Ex. 18, Let three points, 4,8, in space of four dimensious,
be joined, by'lines, each to ede‘of three other points, 4, B, C.
In this way there arise six.ftfads of joining lines, according to the
order in which the points. 4, B’, ¢’ are taken. An arbitrary solid,
by its intersections with “the lines of a triad, determines a plare.
It may be shewn that'the six planes so arising meet in a point,
and touch a quadrie tone.

The triads of {0ining lines may also be described as the two sets of
alternate side§’and the set of diagonals, of the hexagon 4B'CA'BC,
together with the three other similar triads from the hexagon
ABBACC” (which is obtained from the former hexagon by the
nterchange of B and C),

_Let'the given points he of symbols 4, B, C, cte.; and let £m&
&g’ be coordinates relative to these points ; the equation of the

GE+bT ek = by 4 6L
The points in which this solid meets the joins of A, B, C, respee
tivel ¥, to B, _C’, 4', for example, are ad + 6,1, 8B +c,C', ¢C + ad
The ‘plane of these points passes through the point, say O, whose
symbol is ad +bB 1 ¢C + A +5.B +6,C ; as, similarly, do all

the six planes in question. Next, consider the points, taken in
order, whose symbols are

DBt ad', ad 4 BB, 40,4, 1B BB, ad+ ad, C+bB.
These form a hexagon of which the diagonals mcet in the point
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A — b B thus any side of the hexagon is met, not only by the
two contiguous sides, but also by the opposite side. Wherefore,
the six sides of this hexagon are generators of a quadric surface.
The solid in which this surface lies may be defined by three alter-
nate vertices of the hexagon, together with the point of intersection
of the diagonals, and this space is identical with the solid by which
the six plancs are constructed, The planes joining O to the sides
of this hexagon are, in fact, these six planes, which, therefore,
touch a quadric cone, as stated.

If the six given poinis be in a fivefold space, and the six planes;:
be similarly detined by a fourfold, with equation A

a4 = E \ >
—

these six planes lic upon the quadric a 28 +...=a; 2Rk ...y and
pass through the point where this is touched by the given fourfold.

Exz. 14, The theorem, for fourfold space, proved juvthe preceding
Example, includes the result, given above, that the six planes, of
the various systems, which can be dmww"’t{réhgﬂiﬁbpéimoﬂg-hhe
quartic locus ¥, touch a quadric cone; @ Js casy to 3pé! Now let
an arbitrary plane, @, be drawn in one{of the Singular solids, say
123 (or 456). Through the two points:where this plane meets a
pair of lines, of one of the two ixiads of non-intérsecting lines
Iying in this singular solid, say thet two lines 1%, 184 there can be

rawn a definile plane of onc of the six systems, in this case of

system 1. As only a singletdngent solid of the locus = contains
the plane =, because thjs”ies in the singular solid, we jnfer that
the six plancs obtainé® \es” described, meet ina point and touch a
quadric cone, O\

Er. 15, We m@gy rclate the points of threc planes, in space of
four dimensiong,’ By taking four arbitrary points in one of these
planes, and_ifigking correspond to these, respectively, four points
m each of the other two plaves (Vol. 1, p. 148). Then we may-
consider{thé aggregate of planes containing three cotresponding
pointsfiene in each plane, A particular case is that when the three
‘;e.i? of four corresponding points are on four lines, each meeting
'th,e:fhrce planes, On the first plane, &, let the four poinis be u,v,
W.K i on the sccond plane, o', let the points corresponding therfato
bc, U,V', W', K’; on the third plane, «’, let the corresponding
points he U”, V", W", K"'—so that U, U’, U” are in line,as also
V.V, V" W, W', W"and K, K’, K". Fach three of thesesfour
lines has a transversal. It can be shewn, if H, II', H” be any t’hr%e
¢orresponding points respectively lying in the related planes &, &, &'
that the planc HH’H" 1eets the four trapsversals so arsing.

We may identify the four lines, UU'U", etc, which meet the
three given planes, respectively with the lines 4, & ¢,d of the figure

E. G.1v, N i0 -
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discussed above, in the text; then the points U, ¥ Iy, K, and the
general point, H, of the plane g, may be taken to have symbols,

respectively,
yB+z2C, sCrad', A+ yB', yx(B'+C)+ z(C 4 o) + (4 +8)
and Az (YB + 2C) + py (5C + wd’) + vz (0 d + 412

the points U, ¥, W, K arise from the last point, 11, for the par-
ticular values (A, u, »)=(1, 0, 0); (0, 1, 0); (0,0, 1) el (L.LeW,
The point, H’, in the plane «, may then be taken (o he, similarly, -
of symbol Az’ (3 B + 5’ C’) + ete., where A, s v e the sapiehs for
H: and the point, H”, in the plae a”, may he repuciented by
A" (' B+ 2'CY+ete. The general point of the Rkt ITH'H
has, then, a symbol a3
EGB +pOy+ (WO + vA) + E(p/{';—f\iﬁ}.

where £, 9, { are of the respective forms Espye+pys + Py
7= par +p'Er +ete., and F=pxy +ete. The ratios of p, p), P
identify a“v‘&x?i'adifﬁdé@l]iﬁmiﬂtdifgﬂi{s pla W in particular we obtain
the points of intersection of this plané'\%ith the four transversals,
spoken of, by choosing p, p’, P’ so thaby"for these four lines, respee-
tlve]y, (€, L’l:(ls 0, 0); (0, 13(‘]){2(03 0,1); (1,1, 1) .

Ex.16. With the notation, 8f*the text, the common point of
the two planes of the first kindss containing, respectively, the points
B+ 207, 2C +ed', x4 j—_y}_?' and B + %,C, 5C 4+ xd, ete, i

%h—x B+ 20 '31—-1"1_ , T—ih A+ uB)

Yz —hx B+ z. 2{{12;::'1 - B (2C +ad’) + Ty — Iy (vd +yB)

The point of i.ntqr%}éion of the former plane with the plane of the
sccond systetn containing the points; P, or 7B+ {C; Q, or {C'+ £
B, or ¢4 +3d8, provided these two planes do not mect in a live, is

_(yﬁ)ﬁfgg%“(z’g')“B HEMTC+ () A+ (Lo) B+ (By) o Cl
Whm]?\ig a1 EP 4. YR+ xtR. The other plane of the first
systeihthrough this puint is that given by &, i, &, where
A " (- =x e~ xn), o' (¢ — E) =y (zE—xl), ctes

\”\} these are such that

wfa’ = Bl + ¢, YY =Oytt 1 ¢, /s = Onky + b
where 8, ¢ are symmetrical quantities,

CEx 17 Three planes, a, B3 1y, of the first three systems, respec-
tavely, are given by the triads of points

(yB=(, 2Ctad, wd +yB), (y,C +u B, 5d+x2,C, 0, B+ A
(g d + 2d, 2,B 4 @B, 2,C + y,C');

prove that the conditions for the oai o (o)
to meet in lines are, respe '@ pairs of planes (o, 3), (e 7), (

ctively,
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oMy —x)tete=0, a7 (g, - z) + ete.=0, o (y, — 2} + cte. =0,

and that these equations are not consistent, in general. Cf. Ex. 23.

For. 18, With coordinates, £, », ..., {, referred to the six points
4, B, ..., C'; as in the text, prove that the equation

=0Xn =+ e~ EW - B~ + o) (E~9)E—9)=0
represents the quadric point-cone, drawn from the point oL -M,
of the line ¢, whose planes are those of the first and sccond kinds;
meeting, respectively, the Hines a, 8, ¢, d and a', &, ¢, d. Prove,
also, that every tangent solid of this cone is a tangent solid (\ff “the
locus X, « \

FEr 19, Consider the rational quartic curve, in spaee, of four
dimensions, whose points have coordinates, (z,y,2sh%),’ of the
forms (64, 6, 6%, ¢,1); the equations of a planc meehinrg this curve
in three points, a so-called #risecant plane, are of The forms

Ar+ By + Ce+ Dt =10, Ay+Bz+\Qt,‘+Du=0.
If Z, M be any two points of the space, the Hisecant planes of the
curve, which pass thI:'uugh the p()l}l?lt QL%J@%Eﬁ?%ﬁgﬁ g i lric
point-cone, whose equation is of thesdorm U+ 26F + o'W =0,
Determine the other system of plawes of this cone; and shew that
the cone becomes a line-cone for fheee values of .

Prove that the trisecant plames of the quartic eurve which meet
a line are projected, from an athitrary point of the curve, by the
tangent solids of a quadpié point-cone, Deduce, for a cublf: curve
in space of threc dimefisions, that, if three tetrads of points he
taken on the carve, the'twelve planes, each containing three points
of one tetrad, all touch a quadric surfuce; further, that the two
tangent planes, &Fthis quadric surface, drawn from an arbitrary-
chord of the.éubic curve, determine a farther tetrad of tangent
planes of thigfuadric surface (of which these are two); and also
(as was Pemarked to the writer by Mr Vaidyanathaswamy), that
there afe “threc chords of the cubic curve which are generators
0}§ theltuadric surface, (Cf. Vol. mi, Ex. 8, p. 185; and p. 29,
ABOE, L

Nz, )’:20. "The tangent solid of the locus >, whose equatl?n: with co-
ordinates referred to the points 4, B,...C7, waswf+... 4 ¢ EF+...=0,
subhject to w4+ v+ ...+ @' =0, wow + v'v'w =0 (p. 19{9)a may be
referred to the symmetrical points F, G, ..., previously used
(p- 116). For this, let the symbol

Ed+ .. +0C, or EG+H)+qH+F)+...+§ F +6),
be written «F & ... + 20 so that =5+ ..., #=F+9. The
equation of the tangent solid, :

. =0, or u(y+r—a)+ .ty +5-7)+...=0,

10—2
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becomes Un+ ...+ W' =0, with =V + W, .., o' =U +V"
The conditions for the coeflicients then become
- U+V 4. +W =0,

F YW+ UYU+V)+ (V7 + WY+ UYU + V) =0,

For any p, g, r, however, we have
(P+g+rP=pP+¢@ +r7+ 3@+ +pp + o)

. Thus, the second condition for the tangent solid, the tangential,

or prime, equation of the locus 3, becomes _

‘US+V3+W3+U'8+V*3+W’3=0, '.\:\

where U+... + W' =0. O

It may be proved, further, that the ten singulag solids have
equations Uz + ... + W's' =0, where three of U, Fan..4 W' are 1,
and three are — 1. &

Ex. 21. Tt has been shewn (p. 117 abovejsphat the figure of
fifteen points and fifteen lines, with the a¥svciated planes and
solids, is changediindol iitself by difbeen inyglatory transformations.
There exists also a quadric (®?), in regsh'd to which the figure is
its own polar reciprocal. In particila¥, the polar solid of the
- point F—F, in regard to this quadric, is the solid defined by the
points G, H, G', H'. Thus, the fiftecn points such as F—F' are
the complete intersection of ¢the polar solids, in regard to this
guadric, of the six points #,G, ...y H', any four of these solids
Intersecting in one of thé¥e fifteen points; also, the planc of the
pOlnts‘ F-F,G-@, iE;\_ H' i3 the polar plane, in regard to this
quadric, of the linege] containing the points ¥ + F*, G+ G, I + H's
the polar solids of the points of this line all containing this plane.
. With coordingtés)z, Y ..y teferred to F, G, ..., as above, the
equation of this-quadric is

@+yx¥ o+ +a)2—6 (@ + 242+ Y+ 2 =0;
or, if ﬁéﬁ.\’&énote 2+ —y —y —5—%, with similar forms for
8Y,.82, the equation is also ‘

a. . (m_-fr’)“ T-YP+—¥p+ X1 ¥ie 220,
“\which is exl?hclﬂy a function only of the differences of the co-
ordinates. The condition that g solid, expressed by

. Ur+ ...+ W =0,
should touch this quadric is

U1V weggny Vegwre=0,
subject to U+.. .+ W'~ In terms of coordinates &
. - i : i 4 1}, 2
rifﬁ!‘r@ddt() A, B’ . li-p=f,}___éﬂ” q= é-_g:’ T=E— "?’)Pizﬂ’ — é’!
ete,, an 3P=g+q’—'r—'r,etc.,the equation is
PPV +@ g P +a—ry L Pro @ RE=0,
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Ez. 22. "The reciprocity of the preceding Example is a particular
case of a theorem already often referred to (cf. Vol. m, pp. 218,
251; Veronese, Math, Annal., x1x, 1882, p. 161). The twenty-
onc puints, consisting of the six F, @, etc., and the fifteen # — F,
F —G', ete., may be regarded as consisting of two simplexes, each
of five points, which arc in perspective with one another from a
centre, {which is also one of the twenty-one points), together with
the ten points, tyiug in a solid, in which joining lines, of correspond-
ing pairs of points of the two simplexes, intersect one another.
These fwenty-one points may be ohtained cither, by projectionsof
the intersections of seven fourfolds, lying in a space of five dithehi-
sions which contains the fourfold space of the given figure;‘or, as
the interscetions, with this fourfold space, of the joing“ef ‘seven
poinis of this fivefold space. TVaking the latter point Of view, the
fourteen linearly independent (o 4) quadries, which~¢an”be drawn
throngh the scven points of the fivefold space, west the fourfold
space of the given figure in fourteen (o ?) quadries. These are all
vatpalar to the quadric in regard to which dEsulideitied ovelamity
Las place, and determine this gnadric. (Cf.’h*. 10, above,‘ Ex 1)

Lz, 28. Take any point 0, of gencral position, not lying on the
loeus %, Through this point there pags fifteen planes, each joining
the point to one of the fiffeen lineg®f the figure. There also pass
through this point two planes of @ach of the six systems, which we
may denote, respectively, by 351, (2, 2), ..., (6, ). Bach of
the two planes of the first §¥stem meets one of the planes of the
second system in a linc, iptemsecting the line 12; we can choose the
notation so that the plahcs’l, ' meet in a line, and also the planes
I, 2 meet in a line\Abd, then, so that the planes 1, 8’ meet in a
line, and also the phates 1), 8. Then we can prove that the planes
2, 8" meetl in a Jiue and also 2, 8. For, if it were the planes 2, 3
which meet invaine, the planes 1', 2, 3 would be in a :s.ohd; and,
then, the Jifias”23, 81, 12, each of which meets a pair of these
plaves, would he in this solid; this would thus be the singular
solid 188 (or 456). But this solid contains the point O3 ﬁrnd a
general'poink 0 does not lie in any of the ten singular solids, Thus
3ot the planes 2, 3, but the planes 2, 8, q,nd, therefore, also,
the” planes 2, 8, which mect in a line Thlls argument blemg
repested, we can infer that, with proper notation, no two of the
six planes 1, 2, ..., 6 meet in a line, and no two of the six plapes
]_I, 2’, chen 6'; but the P]gnc I's (fo_]_‘ == 1, 2, cury 6) 'I'D.EEtS in a line
every one of the planes 1, 2, ..., 6 other than 7. N‘{Wa let the
symbols 1, 2, ... denote, not the planes through the point O, but
the conics in which these planes meet the locus 2. Then, for
instance, the conies 1, 2 have a point in coramon, where the linc
of intersection of the planes 1, 2" meets the line 12. We have,

Q.
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therefore, twenty-seven Joci on the locus =, the fifteen lines and
the twelve conics; and we easily see that, upon each of these
twenty-seven loci, there are five points, through each of which two
other of the twenty-seven pass. For instance, on the line 12 there
are, first, the three points through which pass, respectively, the
three pairs of lines (34, 56), (85, 64), (86, 45), and there are the
two points through which pass, respectively, the two pairs of
conics (1, 2) and (1', 2). Or again, on the conic 17 there arc the,
five points in which this is met by the lines 12, 13, ..., 16; aud
through these there pass, respectively, also the conics 2, 3,4,)8, 6.
The total number of such intersections of three of thé'\fwenty-
seven loci is, therefore, forty-five. _
Now, let IT be an arbitrary solid, not containing,@. JAllow the
planes, through O, containing the twenty—seven.l()(':i,' Eo moeet this
solid. We obtain twenty-seven lines in II, m¥ebing in threes In
forty-five points. Transferring the notationMo these lines, the
lines 1, 2/, in thdlaakidi iy yneek.in & poirbyas do the lines 1y 25
and the join of these points is the linell2. Also, two lines in TI,
denoted by pg and rs, meet if the symhdls p, ¢, r, 5 are all different,
but not otherwise. The figure in_the“solid II is, in fact, the dual
of that of the twenty-seven linesiof a cubic surface, explained in
Vol. 111, p. 160. And, as in thdt*case, it may be shewn that there
are thirty-six ways of chooiihg a set of twelve of the lines, in
the solid 11, fo play thesparts here played by 1, 1%, ..., 8, 6, the
other fifteen being ther\constructed from these. If we consider, in
the solid 11, beside &e lines, the planes in which this solid is met
by the tangent olids, of the locus ¥, which pass through O, we
shall easily se¢(ibat these are an aggregate dual to thal of the
points of a wubie surface. Three tangent solids of the locus X pass
through anatbitrary plane of the fourfold space ; in particular,
thrce through a plane which contains 0. Thus, in I, three planes
of thQﬁggregate pass through an arbitrary line.
Ve may deal with the matter algcbraically. If the point O be
({A.:l- v tad s vy 50 that {a, b,c, a,", Zf’c’) are its coordipates
\ e 1 -y €', the tangent solid of the locus X, whose
equation is y(f~x) £+ ... =(t—gy)=E' +... (p. 128, above), con-
tains the point O provided ¢ = S/P, where
S=yz(£? —a)-}-zm(b’-—-b)i-my(c’—c),
)  P=al-o+y@-a)+2(a —b)

Thls:deié}tlon conngchng &, ¥, 5 t may be regarded as rcprcseﬂtil’lg
& quadric surface in a space {2, , %, £). To cvery point of this
quadric surface corresponds a tangent solid, of the locus S, passing
through 0; and, therefore also, a 1l ;[" he cubi " egate 10
the solid II. B &2 & plane of the cubic agghos

L ¥y means of this equation, the coefficients of &, %
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in the equation of the tangent solid of 3, take the forms y (§ — zP),
z{(S8—aP),.... When equated {o zero, these represent cubic curves,
in the plane (&, g, %), with six common points. {Cf. Vol i, p. 189.)

More geometrically, we way shew that the planes, of the aggre-
gate in I1, arc the dual of the points of a cubic surface, by shewing
that they weet three fixed planes in corresponding points of three
related plane systems (cf. Vol. 11, p. 185; and Ex. 15, ahove).
That this is so follows from the figure in the space of four dimen .
sions, becanse a varigble plane of one system meets three fixed
plancs of another system in such related plane systems (cf. Exc\l86,
above); while a tangent solid of the locus 3, at a point af\stich
a plane, contains this plane. L M

The dual of the figure which has been considéred. We
have already referred briefly to the dual of the figdye, here con-
sidered, which arises when we begin with four pls%geé, instead of
four Hnes (Ex. 5, p. 117, above). There will be\fiftéen planes, and
six systems of lines, each linc meeting five gssociated planes, In-
stead of the aggregute of the tangent salids ’ﬁ}a?@&lﬁﬂ}f’él’§'§h¥ cus 2,
each containing planes of all the six systéms, meeting In 18 point
of contact, there will be a locus of perhts, which we shall denote
by §; ihis will be expressible by an, equation £5&=&%'¢’, where
E+g+E=§ +5 + ¢, there being three points of the locus upon
an arbitrary line, The six systéms of lines will lie entirely upon
this cubic locus S, a line of“eéach system passing through every
ordinary point of the logasd The locus § will have ten doable
points, corresponding to\the singular solids, such .that any line
through one of these‘points meets the locus ouly in one furt':her
point. All the poibts of any one of the fifteen plaves will be points
of the locus. Awisvindicated in Ex. 20 above, the Eequatwn ?f the
locus § ean be'wiitten in symmetrical form by takm’g COOF(?IHEE.tf:S
X, 7, ... subpthat E=Y+Z, n=Z+X, {=X+7Y, E'=—(Y'+Z'),
7' = (Z'\;t\X’), ¥ =~ (X'+ ¥’). These lead to

SO X+Y+Z2+ X' +Y' +2'=0,

angi.\‘gh'é equation is
- X4 Vo4 22+ X5+ V24 2%=0.
X plane lying entirely on the locus is then represented by X +X =0,
Y 4 ¥/ =0, which involve Z+2’=0; and there are fifteen such
Planes, each corresponding to a mode of dividing the six coordi-
nates into threc pairs. The double points of the locas are those
given by X*=¥*%=...=Z" and are the pumts of which 'three of
the coordinates X, ¥, ... are +1, and three of them — 1. To state
the equations of a system of five planes of which no two meet in a
line, [}et the coordinates be denoted in order by 11 2, 6; let
such an equation as X +¥ =0 be denoted by 12. There are six
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ways of forming a system of five synthemes, such as 12.34. 56, so
that these five synthemes contain, in their aggregate, all the fifteen
duads such as 12 (¢f. Vol. 1, p. 221). Such a system of synthemes
gives such a system of five planes. When such a system of five
planes is obtamed, the solids which join an arbitrary point of one
such plane, to three others of the planes, meet in a line intersceting
four of the planes; this line, therefore, lies entirely on the locusay
and it meets the fifth plane.

But, the locus 8 is obtained in a natural way by considélive,
in space of three dimensions, all the quadrie surfaces which pass
through five arhitrary points of general position. If cpordinates,
in this threefold space, be z, y, %, ¢; and the five &1v&n points,
which we denote by 4, B, C, D, E, he, respectiyly, (1,0,0,0),
(,1,0,0), (0,0,1,0), (0,0,0,1), (1,1,1,1), thefiysix degenerate
quadric surfaces through these five points are £=0, n =0, ... ete,

where N
wé\?,l?}gﬁa_ugg’rap,yﬁng ,thT ), '&:'T t=y),
=U-gz 7 =0-nm¥=0-2)y.
These are subject to £+ 4 £=§ +% ¥, and may be interpreted
as coordinates in space of four dimensions. They are also subject
to Enl=Ew¢’, and represent aelibic (o ) loeus, S, in the four-
fold space. Between the gengral points of this locus, and the

points of the threefold spagey there is thus set up a correspondence,
the reverse equations beitg

’ s8 3
= (n' ~ g)f(f‘f‘\k\f“y:(é’*-&)f(n —), tla=(E =) (E=E)
In general, any ghadric surface through the pomnts 4, B, ..., E, .
w1t1?1_.equatmn~0\fthe form 4 + By 4 Ct=d'8 + B’y +C'C, carre-,
sponds to the ‘section of the locus & by a solid; this is a cubie
Surfac?_ ThhS, the quartic cwrve of intersection, of two such
qu?-drl"&%lrﬁmes, corresponds to the cubic curve in which the locus
5 18..‘{“\6 b}r_ a plane. The three points, beside the five points
4. By..., E, In which three such quadric surfaces meet, correspond
J0 the ?hree intersections of the locus 8 with a line. of which two
- _dctermine the third. s
1Though the results obtainable can only be the dual of those
already obtained for the locus T, it is instructive to follow out the
tprrespondence.  Of this we give some indications :—There are,
throllg}} the ﬁve fundamenta] peints 4, B, €, D, E, of the space of
three dimensions, w 2 cubic curves, one such curve passing through
zfpf}int of ﬁ' plane taken to contain two of the five points. Each
Surfa(?ese cuhilcil curves lies on three linearly independent quadric
men{;ﬂ.s.’ " tc are, then, among those through™ the five funda-
Wing “points; thus, each of these enrves corresponds to & line
ying on the locus 8, of the fourfold space; and, of Jines of this
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system, there is one passing through every general point of S.
Again, taking an arbitrary linc through one of the points 4, B, ...,
E, therc are three lincarly independent quadric surfaces, contain-
ing this line, passing through the other four points; thesc quadric
surfaces correspond to solids in the fourfold space, and they have
in common only the arbitrary line first taken. Thus the lines, o ®
in aggregate, through onc of 4, B, ..., E, correspond to a system
of lines lying on the locus S and, of these, one passes through
each gencral point of 8. We thus obtain six systems of lines lying
on §. TFurther, upon any quadric surface through 4, B, ....¢&/)
there are two cubic curves passing through these five points (Val-yir,
p. 129); and there are two lines of the quadric surface through
any one of these five points. Thus, two of the lines of anypsystem,
of the locus S, lie in an arbitrary solid of the fourfold space—just
as there are two planes of every system, in thedoal figure con-
sidered above, which pass through an arbitrary pomt. Bat there
are particular solids, in the fourfold space, cioh Containing w0 of
the lines of S, of each of two systems. Foiyddtdeptibaraty qugdric
surface, which consists of the plane ABGant a plane through the
line D, contains lines through 2 and " and the quadrics of this
description are lincarly dependent fiom two of them. They corre-
spond, therefore, to a set of solidsy i the fourfold space, having a
plane in common. FEach of these “olids contains o lines, of each
of two systems, on the locud§, of which any line of one system
meets every line of the other: this will be so if the solid meets §
in a cubie surface dcge&é;(’ating into a quadric surface and a plane,
We thus reach ten plancs, lying wholly on the locus 8, each corre-
spouding to the ,ag’;gfegate of a plane containing three of the
points 4, B, ...{'&taken with the line joining the other two of
these five polfits” Again, a quadric cone with vertex, say, at 4,
containin ﬂjt{ other four points B, C, D, E, contains ot lines
through,fi}nd also contains oo ! cubic curves passing through the
five poiats’; and any one of these lines has an intersection, not at
the fiindamental points, with any of those curves ; these cones are
Kncarly dependent from two of them. We thus reach five other
plihes; lying wholly on the locus S in the fourfold space, each
corresponding to the aggregate of the joins, of one of the five
fundamenta] points, to the other four. There are then fifteen
planes on §. Moreover, these fifteen planes, each taken twice over,
consist of sets of five planes all met by the lines of one system on 8.
Yor, the condilion that a plane, in fourfold space, should be met
by a line, is that the two should lie in a solid; such_sohd corre-
sponds to a quadric surface, in the threefold space, passing j:hrgugh
the five fundamental points: and, first, through a cubic curve
which conlains these points can ‘be drawn a guadric cone with
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vertex at any one of them; while, next, through any line drawn
through the fundamental point 4 can be passed such a cone, with
vertex at 4, to contain the other four poimnts, beside four degene-
rate quadrics, such as that consisting of the plane BCD and the
plane defined by AE and this line. Consider, now, the joining line
of two of the five fundamental points, in the threefold space
Through this line, and the other three of the five points, there
pass four lincarly independent quadric surfaces; the vm-respundin@‘
solids in the fourfold space have a point in common, Moreoser,
three of these quadric surfaces, it is easily scen, have ond farther
point in common, not one of the fundamental pointy "Dhins, the
point of the fourfold space, on the locus S, is suchgthat an arbi-
trary line, through it, mcets § in onc further pmnt” We thus
reach ten double points of the locus §, each cortesponding to the
Join of two of the five fundamental points X338, .... K. We can
then proceed to prove that each of the fiftedn planes lving on §
contains fw@ﬁ%ﬂp@?%ﬂs; that' @very solid through one
of these planes contains an “infinite nygwiber of lines, of cach of two
systems of §, has already appeared{ ¥ fact, the nggrewate of a
Pllane through three of the pointsed, B, ..., in the threefold space,
with the line joining the otherfwb, contains this last linc and the
Joins of the three points; hile the joins of onc of the points
4, B, ..., to the others, aredfour in number, The corresponding
dllﬂl_ pruperty, for the figire studied above, was that a line, say &
]{?r in four SiﬂgIﬂ&I‘,Sﬁt‘Ms,-[a, al, [0, 47, [en ), [d, '], each point
of this line ¢ befnp, the vertex of a guadric poinlt-cone whose
.‘P‘la*ﬂeS belonged™o two of the six fundamental systems of planes.
These singularysolids, moreover, eould be, 1‘cspect','ively, generated,
we saw, by(hxial pencils of planes, of axis ¢, of the four other
5y stern? of’planes, In the present figure in fourfold space, for the
109“3‘§§FB‘311 of the four double points, in one of the fiftecr planes
of §§\l tht? cenire of a flat pencil of lines, Iying in this plane:
these" are lines of § of systems different from one anolher, and
P systems remarked as lying in any solid con-
taming the plane. Again, as we likewise see from the dual figure,
through each of the ten double points of the locus S, there pass
six planes lying on 8, from among the fifteen ; and cach of these
planes is the seat of a flat pencil of lines, these belonging to the

SIX systems on §, respectively, the double point being the vertex 0

Now, let O be an arbitrary veneral oint of the locus §: we
suppose }t to_correspond torya.gpoint (E, h,c,1) of the threefold
space. Take, in the fourfold space, a solid, I, upon which we -
project, from O as centre of projection. FEvcry line lying on
g1ves xise, by intersection of 1 with the plane joining O to this
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line, to a line on II. We thus have six systems of such lines.
Evary line through O meets § in two further points; through
each of these there passes s single line of any specified one of the
six systems of lines of §. Thus, of any one of the six systems of
lines in 1i, there are two lincs which pass through an arbitrary
point of I1. In fact, as we know from the dual figure, the lines, of
any system, in II, belong to a quadratic congruence, being common
to a linear complex and a quadratic complex. We give now a proof,
independent of the preceding (p. 185, above), that all the lines of {
ope of these systems, in [I, which mect a definite linc of another
system, equally mceet a second line of this system; from this\it
follows, as hefore, that every two of the linear complexes at€ von-
Jugate (or apolar). Tor this we prove, by consideration)\of the
figure in the threefold space, the following theorem :—Jt a linc,
say ¢, of the locus S, in the fourfold space, he joinédido O by a
plane, mceting 8, further, in a conic, e. From eVery point of ¢,
and from every point of ¢, let the unique linc ef\another system,
upon S, be drawn; this other system W‘é‘t’d&m@ibyﬂw)olﬁ‘ﬁmn
there is a second line, ¢, of 8, of the samp System as e, which is
met by all the lines () drawn througlizthe points of e¢; and the
conic, ¢, in which the plane Q¢ further meets S, is likewise met by
al! the lines, of the system (a), which¥an be drawn from the points
of the conic e. To see this, let theine ¢, of §; be that correspond-
ing to a linc, [, drawn through the point E, in the threefold space
of the poinls 4, B, ..., E. Fhe solids which contain the plane Oe
correspond to quadric surfa{es in the threcfold space, these passing,
not only through the fivépoints 4, B, ..., E, but also through tl'}e
point {a, b, ¢, 1), and_thdugh ihe Jine I Any two of these quadrie
surfaces meet in a_cOhic eurve, which contains the four }{omts A, }_3,
C, D, and the peitit (a,5,¢, 1), and has the line I for chord. This
eubic curve, which we denote by 8, corresponds then to the conic e.
We may now, Suppese that the {ines {a), of the solid §, which meet
the line f\(ﬂ}'respond 1o the lines, in the threefold space, which
pass through 4 and lie in the plane 41 (which contains E); and
that the lines (), which meet the conic e, correspond to the gene-
Labing’ lines of the quadric. cone, of vertex A4, which contains the
cugve . What we desire to prove is, then, that there 1s, upon this
cone, another cabic curve, say ¢,—likewise contanmg the pqmts
4, B, C, D and the point (a,b,¢, 1)—such that the chord, 7', of
this cobic curve €, which can.be drawn through E, lics in the
plane 4. For this, consider the quadric ones, with vertex at the
point (4, b, ¢, 1), which contain the points 4, B, €, D. Any onc of
these meets the first cone in a cubic curve containing the five
desired points. If the line 7 meet the carve § in P and &, & single _
cone, of vertex (a, b, ¢,1), can be drawn to centain 4, B, C, D and
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any specified point, P’, of 4P the intersection, @', of this cone,
with 4@ is then definite. Whence the ranges, (F’), ('), upon the
lines AP, AQ), are related; and the lines P'Q" touch a conic in the
plane 4PQ (or A4l), of which EPQ is onc tangent line: for the
curve € lies upon one of the cones of vertex (a,b, ¢, 11 Thus, we
can draw through E, in the plane Al a single line, KPP, Q,, which
is a common chord, first, of the cone which projects the curyesfl,
from 4 (of which 4P, AQ are two generators), and, secondNof
another cone, vertex (@, d,¢,1), passing through 4, B, C, D. .fghere-
by we find the line 7', and the curve &, desired. "\

The two further points in which the locus 8§ is weét’ by an
arbitrary line through 0 evidently correspond to thé Byo remain-
ing intersections of three quadric surfaces drawn,gfigrthe threefold
space, through the six points consisting of A¢EY ..., F and the
point (a,b, ¢, 1), If these two remaining inbepstetions, of which
one detfermines the other, coincide, it 13, sy to sce that thiﬁl‘
point o co‘i‘lfr\%ig Hithamesiaxinf a quadeic cone containing the
first six poin s.%{%]()cuﬁf the verjcg:;':j{of such a quadric cone,
containing six given points, may be proved to he a guartic surface

(see the Examples below)., This we*shall call a Weddie surface.

This surface then corresponds fa, the points of the locus S which,

when joined to 0, are coincident intersections of .§ with lines from

O; “rriting a=b, B= c'g:,” }?é ab, o = be, B = 'a, r)” = a’'h, where

4=1—a, =1~ ¢ =A 6 we easily see, by substitution of

{--H’La,. 7+ A3, ete, fq;"ﬂie coordinates in the eauation of S, that

the points of § con@’ed lie on the quadric represented by
: IR+ vEn =iyl + BUE + o .

This, thCh weanay call the polar quadric of the peint O, or

(& 8, 9, o, B7), in regard to S, has the same tangent solid at O

as the ]9(5}?3 S and the sextic surface in which it mects § hasa

double@mnt at O By projection from 0, it gives rise to a quartic
surf@e in the solid 10, This quartic surface, which we may denote

h!{f«‘: by K, can at once be seen, from the properties of the locus S,
.mé‘? be Kummer’s Quartic surface, with sjxteen double points and

Mxteen tangent planes each touching it at the points of a conic.
i“.le Plane which joins 0 to any line of § contains also a conic
yng on §, which meets this line in two poiuts; these are clearly
?pon the Intersection of § with the polar quadric of 0. Where-
ore, every line of § Projects, from O, into a line, in the solid il,-
which is ‘a double tangent of the surface K. Further, at cvery

: rface K, the six t ines of K
which touch thjs surface again, tese e, tangent lines o

i these being projections of lines of
S of tt}t:l S1x systems, The polar quadric of O, by its definition,
Passes through j:he ten double points of & and contains, also, the
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six lines of S, of the various systems, which pass through O. This

shews the origin of the sixtcen double

points of the surface K.

Again, the polar quadric of O mects each of the fifteen plancs,

lying upon S, in & conic thus, by proje
dfteen conics lying on the surface K,

ction from O, are obtained
along each of which the

surface is touched by a plane. It may he proved that the tangent

solid of 8, at the point O, gives rise

to another such singular

tangent plane of K. Further, we saw that six of the planes lying

on S pass through every double point

of §; thus, for ten of the

double points of K, it is true that six singular tangent planes pass
through a double point. This js also true for the other six dqlib]e
points of K. Tor, any one of the six lincs of S, passing throhgh
0, meets, we have seen, five of the planes (of an associatedssystem)
lying on §: and this line meets the tangent solid of 8§ at 0. Again,
we saw that any one of the planes of & contains fogsef the double
points ; and that any solid through this plane also holds oo ! lines,

of each of two systems, lying on 8. Defining sieh a solid as that
which contains 0, we sce that the fifteen oofd proisehy fram
0, into planes in 11, each containing six@euble points o K, two
of these arising from lines of & which pds$ythrough 0. The remain-
ing singular tangent plave of K, lying in the tangent solid of & at

0, contains double poits on the sixlifies

of § which pass through O.

In general, as has heen saids, there pass, through a point of the
solid 11, two lines arising as projections of lines of 8 of a particular
system. But there are, in {act, sixteen points of IJ throu h each of
which there pass oo lifiés"of this system, forming a at pencil.
These are the singuhf\ijoiuts of the surface K, as is elear from
what has been saidh, and the same olnts equally arise, wath. the
same characteristity property, for each of the six systems of lines.
There are, sixilarly, sixteen planes, in the solid TI, each of which,
instcad of ,ebfitaining two lines of a particular system, contains a
pencil of\such lines; and each of these planes “contains, also, a
pencil 8f Yines of every system. These six points and planes arise,

in factMfrom the systems of lines of the

space 11. From this point

'Gif\ﬁ’ew they are reconsidered below, in Chap. viL’
'We see that the whole theory 1s analogous to that of the pro-

Jection, from a point of a cubie surface,
surface, Iying on the polar quadric su
regard to the cubic surface (Vol. 1m, p-
theory includes the former, if we

figure by an arbitrary solid pa.ssing through €
Thus, also, it appears that the plane quartic cu
the former theory, by pro_'}ection of the ®apparen

of the sextic curve, of this

" face of this point, taken in

200). Indeed, the present

take a section of the present

h O (cf. Vol. 111, p. 205).
rve obtained, in
t contour” of a

cubic surface, which was stated to be a general plane quartic
curve, may be obtained as plane section of the Kummer surface

\
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K ; a conclusion which was enunciated by Kummer. But, forther,
it also appears, comparing the former theory with the present, that
six intersections of suitable pairs of bitangents of a plane quartic
curve, which lie on a conic (Vol. 1, p. 201), may be vegarded as
the polar points, of the plane of the quartic curve, in regard to six
linear complexes of lines which are mutually comjugate (p. 43,
above),

Ex. 1. The fifteen planes of the locus S, whose equation s
Ent=Eq9't, subject to E+n+L=E+4 +{, we the nine\ex-
pressed by such a pair of equations as £=0, &' = 0; and the'six
expressed by such a pair of equations as £— F' =0, s =),
The ten double points are (1,1,1,1,1,1), with the nineof coordi-
nates (&, &, £,7', £) in which two of & #, { are zefoyund two of

oy g are zero. M @'=1 —a, ete,, the six lingsJnl Lhe various

systems, lying on .S which pass through thexpoint (¥, 22, 21 'y

Yz, Xz, ay), are those which join this poinfyxcspectively, fo the

poluts (z’/z{ua;-" ;j! A X:'f .I"/.Z‘), (2y 2ol i Hy X, ¥ (";’9 ' E"/:;

y:’ X(, m:))v(yzwfﬁ]:ya{g{%}géﬁga%ﬁﬁzs mla.q;“%s FJ’J,'., J"I)'J {03 m" ‘Zy’:’

¥, 0, 'y \®)

Eg. 2. The equation of the Weldle surface, the locus of the
vertex of a quadric cone, in spaee of three dimensions, which
contains six given points, 4, B, €y D, E, F, say (1,0, 0,0}, (0,1,0,0}
(0,0,1,0), (0,0,0,1), (1, 1,431}, (a, b, ¢, 1), is obtainable from

and + BEEyybn =a'y't + BUE +vEy

by putting a=25(1 2¢) a={1-0)¢, E=: ‘={t—

i g¥ha= s —,y(t_'z)a E‘_(t y)z,
ete. It is capable t\i’\m ny forms. For instance,

’(t:.— x) (y— =) (bext + ayz) + ... =0

Or, if we pubiel. Proc. Lond. Math. Soc., 1, 1904, p. 253)

A0 =T“’€" —dE Y[b=py — @', Zie=of -7,
A —Tabe=aE—E)+bir—n)+e(E- 1)
l'tjl's,;capab]e of the form P% 4+ @t 1 R}~ 0, where

- Pea®-OX[~aT/a+(c—a)Z—(a—b) Y] ete.
he surface has a double point at each of the six fundamental

EI?:SJ? ; ldimd cimtams the cubic curve which can be drawn through

Whic}; ar nJ;l cmrd_ of ﬂ}ls curve meets the surface in two points

chord ri‘hearmofmc COII.IUgates i regard to the end points of t‘t'm

funda.m oial sur} afe contains the fifteen joining lines of the siX

intersection olf:'mm 5}: and also contains ten other lines, each the
plane containina Ehane containing three of thesc points with the
the cubio Cul've,gthrsuozh?]‘l th{ee- l'l_‘he coordinates_of a _pomt of

g e S1X points, may be written, in teyms

of & parameter, 8, a5 (0 — a)1, 5(8— 5y, ¢ (9 — )t (0 1)7'3
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thus the respective values #=1, 0, w, a, b, ¢ give the points D, B,
F, 4. B, C. Bcee, also, p. 142, above.

The surface is expressible by those multiply-periodie functions
of two variables which avise from the irrationality involved in the
square root of a sextie polynomial in one variable (see the writer's
Mudtiply-Periodic Functions, Cambridge, 1907).

Egz. 3. Tn the space of four dimensions, four independent solids
passing through the point O, or (a0, 8, v, &, 8, v),are X =0, ¥ =0,
Z=0,T=0, where X, Y, Z, T havc the values of Ex. 2. These
may be used as coordinates in the solid, 11, upen which we project
from 0. Putting p = @'fa, ¢g=¥/b, » =c'f¢, and considering a {ine)
of one system, of the locus 8, given, for proper values of the para-
eters «, ¥, %, by the equations &' =ya7'E, o' =mn, oy L,
prove that this projects from O into a line, of the solidNI; whose
line coordinates, relatively to X, ¥, Z, 7', are S

(=) UVW, (c—a)V'WU, (a—-bNKUV,
FEXF L 8 44 s b
~ov'w, —Vvw'r, _\'f&‘,gé@t‘hulibrary,org.in
where U=y — %, U =yr —zyg, ete. 'The Jibed of the system, ob-
tained by varying a, %, %, thus belong fo the tetrahedral complex
all’ + bmm’ + cnn’ = 0, and also to the lintar complex
@it bmten—alb—e)l' —pe—a)ym ~c(a—-ba'=0,

Er. 4, Shew that; with pl‘n‘Pe'r’ constant values of A, B, C, the
relation connecting , v, w, P10 order that the quadric surface, in
threefold space, expressed by AuX + Bo¥ + (wZ + pT'=0, where

X, Y, Z 7 are the samé\Junctions of the coordinates of the space
as in Ex, 2, should }%\ cone, is identical with the equation, in
X, Y, Z, T, of the ¥eddle surfuce, given in Ex. 2.

Ezx. 5. The cq@m}.’ion (XX ’)i’ + (YY’)Q + (ZZ’)é ={), where

XY Z+ X YL =0,
is idcntica‘{ﬁn\éatisﬁed by writing, for X, ¥, Z, X', ¥, Z', respectively,
a“’(fJ*‘LE); bE (c—a), o (a—b), d'bc(b—c), Bealc—a) dab(a—b),
w,hg;:i?\'.'d‘ =1-a,¥=1-4 ¢=1—c¢ The reverse equations are
\J WYZ=XX'-YY -ZZ, WIZX =YY -2Z'- XX,
XY =22 -XX -YY'
The equation of the tangent solid of the locus, in space of four
Slilz?;nsions, represented by the equation, at the point (@ by ¢), 18
beX + ca¥ + abZ +aX + Y +cZ'=0.

at any point common to

If the values of the parameters a, &, ¢, .
¢y, 72,

the locus and this tangent solid, be denoted by 47,
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these are found to satisfy the equation

(@ —2) (y — =) (boat + ayz) -+ cte. — 0, \
identical in form with the equation of the Wedsdle sucface men-
tioned in Ex. 2.

The locus is identical with that before called ¥, which appeared

with the equation [(n,— £,') () — £)]2 + cte. = 0. { Above, p. 126)
"This was expressed by parameters, ay, gy, 2y, in the forns £=_zz%,
etc. Shew that there is complete agreement if (1 - ) (1 <ghl,
(1-y)(I-0)=1,A-2)(1-e=1. O\
Ez. 6. In space of three dimensions, a general yuarbie stirface

- with fifteen double points is represented by the tirst two equations

W

{Of lines, in sp

of Ex. 5, taken with a single further relation )
IX4+m Y+ 02 +IX +myY’ + ;;&"\é 0.
By the birational transformation of Ex. 5, thixit changed into the

quartic surface with five double points, which s expressed, replacing
a, b, ¢ by wyay 4P e gD \ &

(¢ — @) (y — 2) (lyas + B} + cte. = 0.

In general, this surface contair;&fthé ten joins of the five funda-
mental points, and ten other liges, cach in a plane coutaining three
fundamental points. It becomgsthe Weddle surface if 2/ =mm’ =nn,

Ez. 7. 'The locus S, in space of fonr dimensions, given by
Enl=Ent', E+n+ =@+ &', may be obtained hy projection
of the (w3) locus, il}gﬁ}ﬁtce of five dimensions,—the intersection of
two quadric 1ine'(5"\neé;*—“’hi0h is represented by the equations

O XX fag' = YY'|bb = ZZ jec'.

F(_)r,‘ putting:Cherein, X =g (L1+rz), X' =a (1 +2ax), etc, the
ellmlnatigu; of % leads to the equation
\DZH) =) (0 ) + (g =) (= ) (= ) =0,

This wiay be described, briefly, as the condition that the pairs
&3 Y4’y % % should be in involution. A tctrahedral complex

0 space of three dimensions, can be represented, in space
of five dlmensmns, by the intersection of two quadric line-cones.
(CE. Scgre, dti... Torino, xxu, 1886-7, p. 536, See, also, Chiap. V1l
below, P- 239))

Er. 8, The Weddle and Kummer btained, us appears
ngrﬂ \::"i\t pre.i?edes, without space ofs‘;;iic?in{ﬂa?;igﬁs? by ccnsi{lel‘i”g. the
A mc‘n]re gln;lr(:ei:; ﬁ;ﬁes pags{lng thrm;gh 8ix points in space of three dimensiot gé
e eory Is that which arises hy considering any four (lu*”d?c

ever. Bee Reye, Geoometrie dop Lage and Math. Annal., xovrm, 1897
bp- 118, 141; also Proc. Lond, Math. Soe,, xx1, 1923, p. 121}



CHAPTER VI

A QUARTIC SURFACE IN SPACE OF FOUR
DIMENSIONS, THE CYCLIDE

A quartic surface in space of four dimensions. We hava{ >
- shewn in detail, in Chapter 13, how the theory of a plane curvesef.
the fourth order, which has two double points, may be dedijted
from that of a curve, lying in space of three dimensions, defingd as
the intersection of two guadric surfaces. In a similar wayiwe may
take two quadrics in space of four dimensions, cach reprgsented by
the vanishing of a quadratic function of five homogeneots variables,
and consider the locus of their common points ks will be an
- aggregate of o ? points, say a surfuce, having ¥our points on any
general plane of the fourfold space. If,‘%ﬁﬁ}hﬁ%ibﬁdﬂ\yﬁl@,ﬁﬂse
previously discussed, this surface be prejected, from an arbitrary
point of one of the quadrics, on to any ghrecfold space, there arises
a guartic surface in this space. This“Surface passes through a
certain conic of the threefoli)d spacey which depends only on the
centre of projection and the guadtic upon which this 1s taken
.this conic is a double curve foir*the surface obtained. As in the
other ease, if this definite géhic be regarded as the Absolute conie
of the threefold space, i#\3s" easily proved, from the four dimen-
sional figure, that th ‘quartic sarface, in the threefold space, can
be generated as the &velope of spheres, cach touching it in two
peints, the geneyabioh being possible in five different modes. The
spheres of one gysbém have their centres on a quadric surface, and
cut a fized sphivte at right angles, Further, the five quadl_‘lc sur-
faces, which“are the loci of the centres of the spheres of the different
Sy'ﬁ’f-f‘-ms,ga%{ confocal, all touching the common tangent planes of
any twg of them. These common tangent planes all touch the
quartie surface, at points of its double conic; this comie, being the
ABlute conic, lies on all the spheres. If the projection be made
frdm 2 point which is common to two quadrics of the fourfold
space, the locus obtained, in the space of three dimensions, 1s a
cubic surface, on which the Absolute conic is a simple eurve. The
theory of inversion, which we have given previously (above, pp. 12,
96), 1s likewise applicable herc. As inversion in a plane, in regard
to a circle, was reduced to projeetion in space of three dimensions,
30 inversion in threefold space, in regard to & sphere, is reducible
to projection in space of four dimensions. The fact that we can
obtain, from the same quartic surface in fourfold space, either a

B, 6.1V, . 11
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quartic or a cubic surface in threefold space, becomes the fact that
a quartic surface, in threefold space, possessing a double conie, can
be inverted inte a cubic surface passing through this conie. In
‘particular, from the theory of the lines of a cubic smface, we can
thus infer that such a quartic surface contains sixtcen lines; the
lines of the cubic surface which consist of the line lying in the
plane of the Absolute conic, and the ten others meeting this,
disappear in the inversion. '

The theory fromn this point of view is very analogous to that'we
‘have given for the case of two and three dimensious:{¢bub the
surface of the fourth order in space of four dimensions(is"in fact
simpler than the curve which‘is the intersection of two quadric
surfaces in threefold space. The latter is a curyeof’ which the
poiuts are expressible, in single-valued form, {ohly by elliptic
functions. But the surface in fourfold space’ g rational surface,
whose points are in (1, 1) birational coqespondcncc with the
points of a plane, It Is thus proper to dévelop the theory of this
surface forwﬁ's}ﬁl bl ‘fﬁr@ﬁgy%"lga qudrtic surface, in threefold
space, with a double conic, and theMtheory of a cubic sarface,
arise then as consequences. This 'seems, in fact, the simplest
-approach to the theory of the cubi¢*surface.:

. The surface in question is capable of an extremely simple defini-
tion. Let a, b, ¢ he any thies non-intersecting lines of the space
of four dimensions, and Z4.U be two points, all of general position.
From one of these poititsy say T, there can be drawn planes to
meet the lines g, %é;’frum U7 can also be drawn 27 planes to
meet a, b, ¢. The ‘surface we consider is the locus of the If(ﬁut

common to onel of the planes through 7' and one of the planes
through U, &

Preliminary algebraic consideration of the surface. We
first shéw, directly from this definition, with help of the symbols,
that/thie surface is the intersection of two quadric (w0 ?) loci, obtain
t!:fefzpﬂrarmetrlc expression, and prove that the surface contains

. (Stxteen lines. This involves some Tepetition of work that has pre-

{_yreded; morcover the surface appears later (Chap. vu), as the

representation, in space of five dimensions, of a quadratic con-
gruence of lines. Buat perhaps this is not a disadvan tage. .

_(I“'En the lines a, b, ¢, as stated, let the equations of the solids
[d;¢], {¢, ], [e, 8] be written, respeetively, p=0, g =0, r=0; and,
denoting the line 77 by: e, let the equations of the solids [¢, e},
1B, ¢}, [5,¢] be, respectively, P - 0, Q=0, R=0. We can suppos
that, “_13__’3'31‘3&1]}’9 PHg+r+P+Q+B=0. The lines a, b, ¢, ¢ ar€
then given, respectively, by
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Thos a plane through the point U, to meet the lines a, &, ¢, may
he supposed to meet these, respectively, in poiats for which p, g, 7,
P, q, B are in the ratios of _
(o, 0,0; 0,— s %), (05)89 0; 2,0,— ) (Os 0, 'Y’) - -1";,9'9 0):
and here, since the plane contains U, for which P=@=E=0, we
en suppose &’ =z, 3 =y, and put ¢’ =v. Then a=y —z, B=x 2,
y=a—1y, so that a+ 8+ y=0. Hence we find, for the equations
of the plane, any two of the three ' :
-Pra (8 -y =0, ~Q+y(yr—aTp)=0, A
—R+z(a‘1p~—ﬁ‘1g)-—f0, P
the plane meeking the linc ¢, in the peint U, where p, Q,f‘g.'{?;Q,R
are in the ratios of (@, B, v, 0,0,0). Instead of P, @, & wfunay use
coordinates, ', ¢, #', such that RS
P’—E—P-]—g Fr= Q’+-Q+T+p;?"+ R-{—p-{-‘g:’—_o,
and, therefore, p +q+r+p'+q¢ +r' =0 T%le\\equatiﬂl‘ns of the
Plane then becowe two of the three wwwidbraulibrary org.in
P afg—yy =0, ¢ +aple-zap=0
¥ +::,,“Q,.—-]'.}'J — w’e—’lqz" O’
shewing, incidentally, that the plaglé;él’so meets another line, say d,
given by g =g =+ =0, pjwa=g/yB =rfzy. The equations of the
plane shew that it lies on the guadric point-cone given by
app KBy + 4 =0,
whose vertex, U, has,ﬂo’\“ woordinates p, g, 7, p's ¢ 7', the ratios of
o 3,4, o, 3, oy, vespechively, . Lo,
Tet the point Zybe that for which the coordinates are «, By
o, By+/s a planeftough this, which meets the lines @, 4, ¢, :vﬂ% be
given by equafions arising from the former by putung 7,y ',
"espec’tively\;?b’f @,y, % where o =y %, ’8’,= SATSAN AL
Now, 1ét\ denote any one of By — By, y& —v'oh e —df3,
which axg kt once scen to be equal to one another; put
O t=dBy(p+p) +Bva(g+ ) Ty BT
N/ u=af'y (p+p)+By'd (g+q)+vdB (r+7)
which give rise to
EAp+p)+attoun=0, p(g+q)+BitBu=0,
g (r+ 7)oyt =0
The equations £=0, w=0 represent solids passing, ves
through the points U, T'; in terms of these the equation o
quadrie point-cone found above, with vertex at U, becomes
i (pop' P+ B (g - g F oy P+ ey =0
11--2

respectively,
f ihe
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There is a corresponding point-cone, with vertex at T, whose
equation’ is found from this by putting o', 8’,y',% in place of

&, 3, v, ¢, respectively, The quartic surface under consideration is
- the intersection of these two point-cones; its equations are then
- given by

ppjad’ = qq' /BB =rr'[xys

and these, we see, are equivalent to

[ (p =PV — b+ awyfaa = [t (g — gy — (Bt + Bu¥] /BB

= Lt (= 7Y = (e + ) Yok

These are equivalent, also, to what are obtained by chaliging the
sign of © throughout, AN

Thus the surface contains the four lines a, ¥, ¢, dpgiven, respec-
tively, by g=r=p'=0, r=p=¢'=0, p=¢=7+"=0,dud p=g=r=0
Likewise it contains the four lines, o, &, ¢, & \giwen, respectively,
byg'=r=p=0,r=p=g=0,p=g=r<Band p=g=r=0; .
we easily s6¢, Hhabthese-are dheitransversdly 6f triads of o, b,¢c,d.

But the equations shew that the surfaesgontains the sixteen lines
given by T\ 4

w(p—p)é=ai+ean, #?.(55 2 q) b =Bt + e,
B (r = 1) pSy 't + ey,

\fherein each of 8, ¢, ¢, ¢ is‘fj.'; the value e=1 gives the cight
lines already naned, in virkue of the identities such as

B (PikP’) + o't +au=0,
The 'equatim?s a_.lsq’eﬁe’w that the pentad, of five points, given by
the 1’nterscct10ns,' an fours, of the five solids whose equations are
P=p=0,g-¢=b,r—r'=0,¢= 0, =0, is scif-polar in regard

to all quadrits containing the quartic surface; and that all the

s'}xteen linésyimay be obtained, from any one of them, by combina-
tion of the"five

b harmonic inversions, In which oue of the solids,
and the opposite vertex of the simplex, are taken as fundamental
elements. The solids, P~p=0,g—g =0, r—s" =0, and the

. opposite V}artices, are independent of the positions of T and U
¢_¥ipon the line e, The four lines consisting of ¢ and the joins of any
point, 0, of the line ¢, to these three vertices of the simplex, are
comjugate, m pairs, in regard to the guadric point-cone formed by
the planes drawn from O to meet the lives, a, &,¢.

We have said that the quartic surface is representable rationally
upon a plane. The

. Jparameters for this expression are those which
deterr;u.ne planes ]ylng, respectively, upon two quadric point-cones
containing the surface, Taking the ratios of &, 7, ¢ such that
Efpat=njyp = §ry, the equations

}{’P']aoc’ = gq’ ,/ 88 = ‘ll"ryry'

Q"
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give s Bt o
ok = ... =anl+ BLE+ ¥Eny
plant=q B tE =1y’ En=—(a€+ Bn+ L)

thereby the coordinates, p, g, ..o ', of a puint of the surface, are
expressed by the eoordinates, & u, & of a point of a plane; the six
curves p=0, ...,7’ =0, in this plane, are cubics through the five
points (1,0,0), 0,1,0, (0,0,1), (1, 1,}), (a'ay, B8R Y
The last two points are the intersections of af + By +yf=0,
Wl + BEE+ v'En. These cubics are subject to p+...+r'=40.
Conversely, the theory of the quartic surface may be initiated ‘hy)
considering the cubic curves, of which five are linearly independent,
passing through five arbitrary points of a plane. (CL.Yel. 1,
p- 189 o\

Ex. 1. Shew that an arbitrary plane, drawn thrn,;g;';?ﬁ any line of
the quartic surface, meets the surface again in ofg'peint. As such
a plane mects a fixed plane, of general posi{iqn, in a point, it
cstablishes a representation of the quarkiosyRgEuReb A RARS, in

There are five lines of the guartic sugfage which meet’ theline
through which the planes are drawn. These are represented by five
fundatental points of the plane, Theother ten lines of the surface
beeome the joins of these five fangdgmental points. Obtain, on the
quartic sorface, the representation of a general line of the plane;
and, also, of a general cubic curve passing through the five funda-
mental points of the planed : i

Kz 2. Any iwo gqura} quadric point-cones, In fourfold space,
can he expressed by b{e\equations

g+ =0, a7+ Pyt b= 0.

Denoting (5 —L\)'i, (e —a)k (a—b) ¥ respectively, by Xy pa ¥y verify
that, if we trke

P = MA@y +vz), ¢ =clpe—ry+rth 7= —bpa +ary—v(abo)iu,
P =2l py—ve), ¢ =c{pa—Ay—vi),r == b+ any +v(abe)tu,
t.oge@)ér with a=c—a, B=—¢ Y= d=c—=0 5 ’=--ft, v =b,
\”?;that o+ By=ad+6 +7 =0 then p+q+r+p +4 +7 =0,
fd the {wo point-cones are expressed, respectively, by '

ppjaa’ =g BB and _pp’/aa'= ' oy

Ex. 3. Given, in space of n dimensions, & simplex consisting of
('{“+ 1) points, and the (n+ 1) primes, or spaces of _(“* 1) dimen-
sions, which contain the sets of # of these points, consider the {n + 1)
hatmonic inversions, in each of which one of these points and the
complementary prime are the fundamental elements. Shew that an
&rblpral-}! line, subjected to all possible combinations of these 1n-
versions, gives rise to a set of 2" lines. (Cf. Vol. 111, P 80.)
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Ez. 4. We may verify directly from the equations that the
quartic surface, in the fourfold space, contains no other line than
the sixteen we have found. Any line can be represented hy equa-
tions of the forms p(p—p) =4t +mu, p.(g— ¢ )=Lt+mu,
pa(r—1) =Lt + myu; the substitution of the values of p—yp)
g—q, r— found from these, in the equations of the surface,
determines all the existing lines.

Lz 5. Prove that the two lines ohtained, respectively, from the,
equations .

Ox=ot+eau, dy=PBT+eBu, Yr=r't +eyu, (\J))
by taking e= # 1, lie in the plane expressed by O
(o —a't)fa=(dy — BB = (Yz — v O){4
and that this plane meets, in a line, any one of the four planes
whose equations are obtained from these hylNchanging the sign
either of one, or of all, of 8, ¢, yr,—where 2= = > =1.

Resumption 4pf. e .Aesepiptive the})ry of the quartic
sirface. The sixteen lines. As befor®, let a, 2, ¢, ¢ be four
lines, of which no two intersect andhpe’ three lie in a solid; and
let T, U be any two points of . Wenconsider the surface which is
the locus of the intersection of i ‘plane drawn from 7' to weet
a, by ¢, with a plane drawn fréit U to mect thesc lines. All such
planes, we have shewn, willtmacet another line, d, associated with
a, by ¢,e. Let a', 0, ¢, dnbe the transversals of the threes of the
lines a, b, ¢, d, the line@ meeting a, , ¢, and so on. Through any
point of a plane, hich meets a, b, ¢, d, there passes also a plane
which meets g/, b:sgxa d, and meets e in the same point as does the
former plane (p, 123, above). Thus the quartic surface may also
be defined by ‘planes through 7' meeting a, b, ¢, taken with planes
through Ulweeting o', b, ¢’ or viee versa; or by planes through
T and Biboth meeting ', ¥, ¢ ‘

T}Q\[‘)lzme? from T meeting a, b, ¢ intersect an arbitrary solid in
generating lines, of one system, of a quadrie surface lying in this

's\o‘].}'d (p. 122, above); another quadric surface is obtained in this
\solid by planes from U meeting q,
/ discussion thus meets an arbitrar

by, ¢. The quartie surface under
¢ I y solid in a quartic curve, the
Intersection of two quadric surfaces: and, therefore, mects an
arbitrary p]aqe in four points, We thus speak of the surface as
b_emg a quartic, or of order four ; the order of a locus of » dimen-
sions, lying in a space of n dimensions, being the number of points
of this locus which lie in a (planar) manifold of »—r dimensions,
of gencral position, when this number is independent of this man-
fold. A plane through T' (or U), which meets a, &, ¢, contains
however, not four, but an infinite number of puints of the quartic
surface, these lying on a conic; for the planes through U {or T)
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which meet a, b, ¢ determine a quadrie surface in any solid contain-
ing this plane. ' o .
Every one of the cight lines a, &, ¢, &, o', ¥, ¢, d' lies on the
quartic sarface, such a line being a common generator of the two
quadric surfaces determined by T and U, as above described, in
any solid drawn through this line. Any other line lying on the
surface must likewise be a common generator of two such quadrie
surfaces ; this line must, therefore, be common to a plane through ,
T meeting @, b, ¢, und to & plane through U which either meets
@, &, ¢, or mects &', &', ¢ or the staternent must hold with intéx.
change of T' and U. Now, a plane through 7, meeting a,°0,%¢
{(and, therefore, d), cannot have a line in common with a\plane
throngh U/ meeting «, b, ¢, unless this line be one of &3, ¢, d’.
For the two planes, having a line in common, deterpiing a solid ;
and a line which meets both the planes lies in thiyslid, unless it -
is & linc, meeting the line of intersection of theplanes, not lying
in cither plane, Thus the line ¢ lies in this gelid; and, as two of
the lines a, b, ¢, d do not lic in the sawwbelidawithegthree; of
these lines musl. meet the line of intexséttion of the two planes.
This line is, therefore, one of a, &, ;@4 Similarly, a line lying
on the surface can be one of a, &, ods There is next the possi-
bility of a line, lying on the surface,“which is the intersection of a
plane, o, through 77, meeting a,8,¢, d, with a plane, 8, throngh U,
meeting o', b, ¢, d'. For thitvease, consider a solid through the
former plane, &, aud the qubdric surface, lying therein, which is
defermined by the pl@neﬁhrough U of the two systems, those
mecting a, b, ¢, d, and bhiose meeting &, &, ¢, d.  As this plane a
contains a gencratdr of this quadrie surface, lying on & _plane
through U meeting o, &, ¢/, d', the plane a also contams a
generator lying‘n}n a plane through U meeting &, 53 G d; :rhlf’
second generdtor must thoen, as we have seen, bq one of &, &', ¢, d’.
By a simﬂiﬂﬁrgmnent the plane 8 must contain one of a, b, ¢, d.
That is,&he line in guestion is the intersection of a plane through
' coptairting one of «, ¥, ¢, d' (which, therefore, meets a, b, ¢, )
with"a "planc through U containing one of &, &, ¢, 4 (which, there-
dore, meets o, i, &/, @). The solid determined by these two planes,
a8"it contains T' and U, contains the line e 'l‘h'e only solids
possible, containing ¢ and also one of &, ¥, ¢, d' and onc of
4y b, ¢, d, are the four coutaining, respectively, the lines (a, &, ¢),
by ¥, e), (¢, ¢, ¢} and (d, d', ). Conversely if, for exampl?, th‘f
plane Td’ meet the line d in H, and the plane Ud meet the line &
In K', 1t is at once scen that HK’is a line of the quartic sur’face.;
and, if TH mect &’ in H', apd UK’ meet d in K, that H'K is
another such. The four lines d, &', HK', H'K are the degenerate
© quartic curve in which the solid {d, d’,¢) meets the quartic surface,
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Three other pairs of lines are similarly obtained by drawing the
transversals, from T and U, to a, &', to &, &, aud te ¢, ¢. The
only remaining possibility, for a line of the quartic surface, of
being the intersection of a plane through 7' meeting &, ¥, ¢, &'
with a plane through U meeting a, 4, ¢, d, leads to the same four
pairs of lines.

Thus, beside the original eight lines, «, b, ..., d’, there are eight

- others, two in each of the solids (g, &), ..., (d, d'); and thesc, are,
all. Another geometrical derivation of the lines arises below
(p. 170). Now denote, temporarily, the two lines so obfaited
which meet d, ' by £ and ¢’; and, similarly, those wceting\aa'),
(b, I'), (c, ), respectively, by (z, ), (m, '), {(x z).  As\th€ section
of the quartic surface by any solid is the curve of fifChsection of
two quadric surfaces, there cannot be three lings{df the surface

- lying in a plane, or meeting in a point. Thais Yor instance, the
i@ne x, meeting a’ (which meets d), cannot %fft d; and thelszu}!e
ine &, meetin 4’ The interséetion of @ with the
solid (d, d'Y%%{S‘t %%ﬂgzﬁ?log;? . Thc{gi’i points in which &, &'
¥ o's 7 & meet the solid (d, @) mustydw) the same way, be all on
t or #'. 16 will appear that there ave’three on each. Thus we see
that every one of the sixteen lines$s'mict by five others,

The self-polar pentad for the quartic surface. The
quartic surface has appeared #s the intersection of a quadric point-
cone of vertex 7', with a quadi‘ic point-cone of vertex U, each gene-
rated by planes through ltg vertex meeting either a,b,¢,d or ', v.e,d.
By an appeal to the efuations of these concs, it thus appears that
the surface lies on & quadrics, each a locus of o * points, of which
the equation of @hy one is of the form (T) 4+ (U)=0. As in the
analogous cagés’ini a plane, or in three dimensions, there are then, in
J.Lhe general éase considered, three other quadrie point-cones contaln-
ing the qhartic surface ; and the vertices of the five cones form a
self-polar pentad for all the quadrics containing the quartic surface.
I-t}?f é;aﬁ}' to specify the vertices of these other cones. Using a

préreding notation (p. 113, above), let A, #s v denote, respectivel}’s

,‘\Ithe planes of the pairs of lines & p), (m, g, (n, ), of which, for
yexample, the first eontains the points 4, 4', P, P, L; and let
X, Y, Z Le, respectively, the points of intersection (g, #), (¥ M
(A p). These are the points of which, (cf. Ex. 4, p. 117), the
s_zmbols arc F-F", G- @, H-H., oo £ +B+C, B LA,

¢+ 4 '!'B (p. 117, above). Tt can be shewn that the self-polar
%]fntad is formed by these points, X, ¥, Z, together with 7 and T.
will be noticed {hat A, Y, Z do not deperfd on the positions of

T and U upon the tine 5. For, | .

: . . For, it was seen that the points ¥,
are in the solid [A, ¢]; and . WP T the
two points @, BE t,ha]t s Ighethat, in regard to X and this solid, t

points (5, d') and (¢, @), are harmouic
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conjugates; as are also the points of each of the pairs (B, €,
(R, (), (), B) (p. 117, above). The four pairs of points all lie on
the quartic surface, by what we have proved; and a solid is deter-
mined by four points. Wherefore the solid [, ¢], which contains
the four points ¥, Z, T, U, is the polar solid of the point X in
regard to every quadric containing the quartic surface. Similarly
for ¥ and Z. Again, the solid containing X, ¥, Z, U is the polar
of T in regard to aull these quadrics, For, this follows if we shew(
that, for the quadrie point-cone constituted by the planes dragn
to meet o, b, ¢, d, or &, ¥, ¢, &, from any point, 0, of the lines,
the polar solid of the line e is that contaming X, ¥, Z and 0
and, for this, it is sufficient to shew that the plane XY.Z\contains
three points, each of which is a harmonic conjugate sf\a point of
the line ¢, in regard to a pair of points lying déntthe quartic
surface. In fact, the point which is the harmomig conjugate of
the poini L, in 1‘e§_;'a1‘dp to the points 4, 4, bath*of which lie on
the quartic surface, lies on the plane X YZ 4 hiis point lies, indeed,
on the line ¥YZ (p. 117, above); and thepevis hraiiten t
for M and N. This discussion shews alse that U iz the pole of
the solid containing X, ¥, Z, 7. 'Thesproperty of X, ¥, Z, T, U
is thus established, o : _
It follows hence, from the haxivenic property of the polar solid
of » point in regard to a qualltic, that to any line of the quartic
surface there corresponds sanother, the barmonic inverse of t:he
former in regard to any y&rtex of the polar pentad and its opposite
solid, These two lines\interscet on this sogid, su that any one of
the liues meets five others. All the sigteen lines ave obtainable
from any one of fhem by combivation of the five possible in-
versions. As wlihe in space of four dimensions deP‘{“dS on HX
parameters, tQa’number of parameteys necessary to specify one I}ne
and the five @oints of the polar pentad is 6 4+ 5. 4, or twenty-six;
this is thelsfme number as that, 3. 6 + 2. 4, required to specify the
three Knes a, &, ¢ and the two points T, U.
Agaln, In any one of the solids of the polar pentad, say that
Z9Pposite to the vertex U, there will be eight points, each an inter-
sgtion of two lincs of the quartic surfuce. These pairs of Iines
lie in cight planes through U, which are planes of the quadric
point-cone, OF vertex U, containing the quartic surface. ) The plane
of the two lines which intersect in one of these eight points, say £,
of the polar solid of U, is easily seen to lie in the tangent solid,
at E, of any quadric which contains the quartic surface. Thus,
this plane is tangent, at E, to the quartic curve in which the
quartic surface meets the polar solid of U. This quartic curve lies
on the quadric surface, say @, in which this polar solid is met b‘r
the quadric point-cone, of vertex U, which contains the quartic
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of these, which intersect in another point beside 0, lie in planes, of
different systems, of the cone of vertex U/, aud there are four other
such pairs, Hvery one of the sixteen lines of the surface meets
five of the ten conics, one of each of the five pairs; and each conic
is met by eight of the lines. Further, each conic is met, besides
at O, by the tangent plane of the surface at 0. We can fix these
relations by remarking the consequences which follow when we
project from O on to an arbitrary solid :—The tangent planebt
the quartie surface at O will meet this solid in a line, say £. /ach
of the conics through O will project into a line meeting théline ¢;
and the ten lines so found will interscet in pairs. Tlaghhgf these
ten lines will also be met by eight of the sixteen lingssiliich avise
by projection of the lines of the quartic siurface; afid will thus be
met by ten lines in all. A linc arising by prejeetion of onc of
these sixteen Jines of the quartic surface will hagwet by five others
of these, and will also be met by five of the Whes arising by pro-
jection of the tex BORAIFb rathy gl AxDitrany plane through O meets
the quartic surfacc in three” other puimts,'the quartic surface will
project into a cubic surface; and this*will contain the twenty-
seven lines which have been describiéd: ™

The theory of the guartic surface Ji;ziy‘ be studied in further detail, for its
great interest aud simplicity, In particular, the systems of curves which lie
upon the surface may be examined ; either dircctly, or, as in the case of
other rational surfaces, by their representation upon 5 plane; it appears that
every curve iz co-residnal with an aggregate formed from six fundamental
curves, The correspondi};ﬁ‘txeory of corves upon a cubic surface in threefold
space (cf. Vol. ni1, pp. Q8I1HE) may be deduced from this theory by projection. .
In th,‘a Place only inditations ean be given, of an cxtensive iheory. The
mastimportant sourtenf information, with full references to previous liferatare,
is Begre, Muth. Aknﬂ&f. xx1v; 1884, pp. 313-444. See also Darboux, Sur wse
elasse remarquithie de courbes of de surfaces wlgébriques, Paris, 1873, and the
Blblwgraphy:,\to 1872, appended thereto. For an introduction to the theory
of the eastesiduation of eurves upen the surface, reference may be made to
C. V. HsReo, Proc. Lond. Math. So. xvr, 1918, pp. 272-505.

Tlte cubic surface in space of three dimensions s and the

Heory of inversion. Regard the quartic surface which we have
(\Hiscussed as the interscetion of a quadric point-cone (U), and &
‘particular quadric, . Denote the surface by I. We have just
considered the projection of I, from a point @ cowwon to (2]
?’Pd {2, upon a solid, say I1; this gave a cubic surface in II.
U.lrough the point O, of '), there passes a comical sheet of lines,
lying on Q an(li on the tangent soqid of O at O (p. 37, above).
Each of these lines meets the cone (T7) in a further point, which is,
i:hf:m also on T The conical sheet of lines meets L1 in & conic
)Jrﬁmg in the plane in which 11 is met by the tangent solid of £

% 0. ‘Der_mte this conic by w. The cubic surface in 11, obtained
Y Projection of T', contains the conic w. Every one of the sixteen



Cubie surface, th threefold space 173

lines of 1" meets the tangent solid of Q, at 0, in a point, also
lying on Q, as does the line; thus, the sixteen lines of the cubic
surface which arise by projection of the sixteen lines of T' intersect
the conic w. Other ten lines of the cubic surface, arising by pro-
jection of the conics of T which pass through O, meet the line of
the cubic surface, lying in the plane of @; this arises, as we have
seen, from the tangent planc of 1" at O.

In this derivation of the cubic surface, the centre of projection,
0, lies on the cone (), as well as on 3. We may, however, obtain,
on the quadric £}, another quartic surface, say I", exactly similsr
to I, but not passing through 0. Take any point, #, not lyingon’)
), and the ypolar solid of H in regard to (; to any point, I%; of
the fourfold space, make correspond the point, P, of the Jine' P,
which is the harmonic conjugate of P, in regard to Aland the
polar solid of H. In particular, when P is on £, thé point P’ is
the second intersection of the line HP with Q. Then, as in the
case of threefold space (p. 13, above), to the quadrie point-cone
(T will correspong another quadric pd‘iﬂ‘li\ﬂ’;:é Aubipradly)prgliose
generating planes meet those of () on the polar solid of H. To
the surface [ will then correspond the itersection of £ with this
cone (U'); this will be a surface, IV, exdéily similar to I, but not
in general containing 0. If the surface [ be projected from 0, on
to the solid I, we obiain, thereinya surface of ‘the fourth order.
This may, then, be obtained, fram the cubic surface into which I’
projeets, by a process of jnversion in this space 11, in regard to a
sphere lying in this solid fthe’ Absolute conic being w). The centre
of this sphere is the n’cﬁ’ection, from O, of the point H (pp. 14,
374, above). By the%rocess of harmonic inversion, with H and
its polar solid, the sixteen lines of T which lie upon {, become
lines of T'; an@ these are projected from O into lines of the
quartic surfaééy in II, into which IV projects. Thus the sixteen
lines of thé_gubic surface, in the space I, invert into lines. But
the othefeleven lines of the cubic surface, as we see in a similar
way, doinot invert into lines. )

E# 1. A cubic surface, in the threefold space.of coordinates
<, ¥, 2, u, which meets the plane @ =0 in the conic Pty +2=0,
afd also in the line I+ my + nz= 0, is expressible b)f an equa-
tion {2* + 37+ 2.'*) (gm 4 my + O up = 0, where ¢.= 0' 54 quadrlc
cone of vertex (0,0,0,1). This surface arises, by projection, from
the point, in the fourfold space (2, ¥, & % ), thse coord“mates are
{0,0,0,0, 1), of the quartic surface which is the intersection of the
quadric a2 4 37 4 2 + tu = 0, and the quadric puint-cone

t(Te+ my +n) + =05
whose vertex is (0,0,0,1, 0.

QY
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Ez. 2. With the notation of the text, let the conic of T, lying
in a plane through O and T which meets the lines g, b, ¢, d, be
called (5); and the conic, in a plane through OT, which meets
a,b,¢,d, be called (6). Through QU there is a planc, mecting
#,b,c,d, which contains a conic of I' which we call (§), and a
plane, meeting (a, ¥, ¢, d), containing a conic (5). "Lhe two sets
of six elements, a, b, ¢, d, (5), (6), and o', ¥, ¢, d’, (537, {0'), project
from O into a double-six of lines (¢f. Vol. 11, p. 160). The conics
of T' in planes from O to the vertex X, of the self-polar penta,
may be called (23) and (14); those similarly arising for ¥ and-Z
being, respectively, (81), (24) and (12), (34). The eighb, vther
lines of I' may then be denoted by symbols (#5), (r6), forw'=1, 2,
3, 4. £

Ez. 8. Prove by projection in fourfold space thaty by inversion
in threcfold space, a line meeting the Absoluberepnic inverts into
another line meeting this conic, and meeting theformer line.

The Cyclideqom anatticsuzface wit}{\a. double conic, in
threefold space. Consider now more patticalarly the character
of the surface, in the threefold space {3 which is obtained by pro-
jecting, from the point, 0, of the quadpc 2, the intersection of {
with the quadric point-cone (U), wat' passing tlirough O. Denote
the quartic surface constituting ¢his intersection by I'; and let the
surface in I1, obtained by pxojéetion of I, be called the Cyclide.
As I' is met by an arbitraryplane, of the fowfold space, in four
points, the Cyclide is mat 'by an arbitrary linc of the threefold
space m four points, xi;Qd is & quartic smface. The lines of the
conieal shect, in whith™Q §s met by its tangent solid at 0, each
meet the cone ({\in two points. Thus the Cyclide has the conic,
®, In_which this Conical sheet meets I, as a double conic. Lvery
line lying oft I, since it meets the tangent solid at 0, and Lies
1’_5591f on_fmeets the conical sheet; thus the Cyelide has sixtecn
lines, which all meet the conic o. )

"The'\poles, in regard to Q, of the tangent solids of the cone (0
arésan aggregate of o * points; they lic in the solid which is the

. polar of the vertex, U, of the cone (I7), in regard to £ they

Jdescribe a quadric surface in this polar solid. This we denote by
Q). A tangent solid of the cone () touches this cone along a
line; .thls line meets 0 in two points. The tangent solid of {U)
contains the tangent plane of I' at each of these two points. The
section of Q, by this tangent solid of (U), projects from @ into 2
quadric surface in 11, containing the conic w; or, as we shall say,
mto a sphere, the conic o being regarded as Absolute copic of the
space _TI, "The centre of this sphere, being the projection of the
pole, i regard to 0, of the tangent solid of (U7), lies on the
quadric surface in (U) which is the projection of the quadric @(U)
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(p. 87, above). This sphere, then, touches the Cyclide in two
points, The scetion of {) hy the polar solid of the vertex U, of the
point-cone, also projects into a sphere, in TI. This sphere, which
depends only on U and O, is cut at right angles by the sphere
arising from the chosen tangent solid of (U), because this tangent
solid and the polar solid of U are conjugate in regard to Q (p. 40,
above), Thus it appears that the Cyelide is touched, in two points,
by an aggregate of spheres, each delined as having its centre on
certain fixed quadrie surface, in the space IF, and cutting at right
angles a certain fixed sphere of this space. Or, we may regand\the
matter in a slightly different way: Any plane, in the fourfeld
space, meets the quadvic & in a conic. Thus the section of 3, by
a plane, projects from O, on to the solid 11, into a gomic having
two points of intersection with the Absolute conic, @ythat is, into
acirele. When the plane, not passing through Oy meets £ in two
lines, these become, on projection, two lines meeting the conic .
If the plane be a generating plane of the eohe (U}, so consisting
wholly of points of this cone, this plane‘ﬁt@tdhimﬂhwt-ép.su fage
T' in & conie, projecting from O into aivele lying on the Cyclide.
Through such a generating plane, of (thé cone (U), there passes an
infinity of tangent solids of (U), each eontaining another generating
plane, of the opposite system. EBUS, by what is said above, through
the circle on the Cyelide, jusgiObtained, there passes an infinity of
spheres, each meeting the ‘Cyi:lide in another circle. Any such
sphere will touch the Cyclide at the two intersections of the two
eireles which lie upo™the sphere. As the tangent solids of (U)
which pass throughig\planc have their poles, taken in regard to O,
upon the polar Lime of this plane in regard to ©, it follows that
the spheres, pagsing through a particular circle which lies en the
C}"(‘.lidc, have their centres“ on a line, This is then a generator Of
the quadrié’sirface, in TI, obtained by projection of the quadric
surface\Q“{’U), A special case arises when the particular circle
consistS\of two lines Jying on the Cyclide. .

By 1. In the fourfold space, we may take coordinates, (%%, %
,3%"); for which the point 0 is (0,0,0,0,1), the tangent solid O.f Q2
880 being u — 0, choosing , ¥, % so that the conical sheet of lines
of ) at O is given by w = 0, #° + g2+ 2° = 0. Then the equation of
Q is of the form —uf + a* + y° + 5t + 2P + dut=0, where Pisa
homogeneous linear form in x4, = If the point U be (0,0,0,1,0),
the equation of the cone () is 2+ 2Q + ¥ =0, where Q, V' are
homogencous in a,z,7 respectively linear and quadratic. The
elimination of ¢ between these equations gives the equation of the
Projection of their intersection, upon the solid £=0; this solid is
here taken to contain the point U. If, in the eliminant, we put
@+ b, 3y + ma, % + nu, Tespectively, for @, ¥, 5 and choose 7, m, %
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properly, the equatioh of the projection takes the form
(@ + 3 + 2P 4w W =0,

where W is a homogeneous quadratic form in a, gy, 2 and w. This
equation, however, can be written (% + 5 - #° + A’} +2M =0,
where M =W —2x (2 + & + #) — A% By taking, for A, a root of
a certain quintic equation, the equation M = 0 represents a quadric
coney thus, for such A, we can suppose M = XY — 722, where X, ¥, Z
are homogeneous linear forms In @, y, x and «. "Then the equatifn
of the Cyclide becomes CD + w*XY =0, where €, I} arc of\the
forms 22 + 3% + 22 +7\a £ uZ. "This is satisfied by C=0, X A0y and
by C=0, Y=0. The equation C=0 represents a sphete, and
Z =0 is any plane through the vertex of the cone M0, of which
X =0, Y=0 are tangent planes. There are, thertfire, oo such
spheres. \Y

}E.zl; 2. The Cyclide can he generated as #hievlocus of a circle
which is the, jndersaehimenrof oo Varying spherd passing through &
fixed circle of the sul'taclé?f%@iﬁ%g cil‘%&ldﬁg \-'a%ying s[l;jhere
passing through another fixed circle of\the surfuce.

Ex. 3. The Cyclide, we have seeng is the envelope of 'a varying
sphere, with centre at a varying paint, say H, of a fixed quadric
surface, @', the sphere cutting at mght angles a fixed spheve, 5. The
varying spherc touches the Cyelide in two points. These two
points of contact are, in fact; the limiting peints of the system ot
coaxial spheres defined By>the fixed sphere 8, and the tangent
plane, at H, of the qu’ﬁ&ric & (cf. Vol. m, p. 74). The Cyclide is
thus the locus of theimiting points, so defined by the fixed sphere 5
anfl the varying tangent plane of the quadric surface §'. To prove
this, consider thé-figure in the space of four dimensions, Let LL
be the two.pc}ints where a generator of the cone (U) meets £
take thﬁg alar plane, in regard to Q, of this line LL. This plave
lies on &he polar solid, in regard to L2, of every point of the line.
In pérticular, it lies in the principal solid which is the polar of the
vertex U-‘ The plane touches the quadric surface @ (U). 'The piane

o (meets {10 a conie, which we denote by A ; this conic is, therefore,
) on the section of O by the polar solid of U. As the plane is in the
tangent solid of Q at L, the conic A js on the conical sheet of 1ines

of Q through L. When we project, from O, this conical sheet

,b ecomes a quadric cone, in II, whose vertex is the projection of L.
rh{$ cone coutains the conic which is the projection of A and alse,

as In preceding cases, contains the conic w. The cone, therefores
contains t}'ze section of a principal sphere, S, by a tangent plane of

' 2}? quadric surface, @, (arising by projection’ of Q (U)) and con-

108 @, The vertex of this cone, the projection of L, is, therefore,
a limiting point of the coaxiul system of spheres defined by the
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principal sphere, and the tangent plane. By definition, L is on the
quartic surface I', and projects into one of the points of contact of
the Cyclide with the sphere obtained from the scetion of O by the
tangent solid, along LL, of the cone (D).
If, in the threefold space, the quadrie surface @ and the sphere &
be, respectively,
gl bR e hd W =0,
a4+ Y at + 2oyt + et + R =0,
the Cyclide is O\
Wla(e+ P +b(y+ gt +ela+ P +d{ 42+ 50~ kt"ijgz 0.

Ez. 4. The plancs of the circles, in whieh the Cyélide is met
by the enveloping spheres, are tangent planes of onegof five quadric
concs. These are often called the cones of Kumnier.)®

The five generations of the Cyclide)'with confocal
quadric surfaces, The Cyclide has, at anp\point of its double
curve, », two tangent plancs, one touchinghdaobhshetinriVe ;
now, that all these p]alI:es touch the quadrcic surface, @, oﬁ(ggﬂ%
I, which is obtained by projection, fret 0, of the quadrie @ (U).
We may call this quadric surface afisicipal quadric of 11 ; and call
the sphere 8, obtained by projgetion of the section of ( by the
polar solid of (he vertex U, avprincipal sphere. Every generating
line, of the conical sheet of lines of {3 at O, meets the point-cone
(U) in two poiuts, say K and K. The Jocus of the point K is the
curve, in the tangent solid of  at O, which is the mtersection of
the conical sheet of lihes of Q at O, with the quadric surface in
which the cone (U \meets the tangent solid of  at 0. This curve
is of the fourth fder. Consider the tangent solid of {2 at the point
E. This solid{phsses through 0, and meets the tangent solid of O
at @ in a plane, which touches the conical sheet of lines through 0
(p- 38, abave). This plane, therefore, contains a tangent line of the
conie_gh, "The point K lies on the surface I. The tangent plane
of R&E this point,—being the intersection of the tangent solid of

AULAL this point with the tangent solid of © at this point,—pro-
igets, from O, into a tangent plane of the Cyclide. This plane is
the intersection of TI with the solid, through O, containing the
tangent planc of 1" at K this solid is no other than the tangent
solid of ) at K. "Thus, the tangent plane of T, at K, projects nto
4 tangent plane, of the Cyclide, at the point where OK meets the
conic @, The other tangent plane of the Cyclide, at this point,
arises, in a similar way, from K'. .

. Next consider the line XU. It lies on the eonme (U), and is the
nfersection of two generating plancs of this cone. Its polar plane,
I regard to 2, is, by definition, a tangent plane of the quadric

B. G, 1V. 12
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surface @(T7). This plane also lies in the tangent solid of { at K,
because the line KU contains the point K. Thus the plane, into
which the tangent plane of T', at K, projects, is also a tangent
plane of the principal quadric €, of II. The point of contact is

. the projection of the point, of the quadric surface @(T7), which

is the pole, in regard to Q, of the tangent solid of the cone ()

along KU.
It is thus shewn that the tangent plane of I, at &, projects inta_

a tangent plane, of the Cyclide, at a point of the conic w, this plae
also touching the quadric €', O\

In the gcneral case, there are, beside the conc (T7), foux other

quadric point-cones containing the surface I': to eachieone corre-
sponds a principal solid, the polar of its vertex in{egard to (1,
containing the other four vertices. The sectiong’ef ) by these
principal solids project into five principal spheffstin the solid IE
To each cone will also correspond & quadric sicface, such as @ (U),
lying in the,copraspenilingrpringipal solid, thid being the polar, in
regard to £, of the aggregate of the tadgent solids of the cone;
the quadric surfaces, so arising, prefect into principal guadrie
surfaces in II, such as Q’. ¥rom the conjugate relation of the
vertices of the cones in the fourfald space, it is clear thal, in the
solid 1I, the centres of four ofethe principal spheres form a self-
polar tetrad for the remaining Sphere, and for the corresponding
Prmclp_al quadric surface;.also, the join of any two of these centres
1s at right angles (in raga.rd to the conic w, as Absolute conic) to
the plane containing #hé other three; while, further, any two of
the principal spher¢ &elit at right angles (p. 40, above). Likewise,
by what we have “Just proved, the five principal quadries belong to
& confocal system, being all touched by the tangent planes of the
Cyclide at_theéypoints of the conic @, This conic is then one of the
four focal' /Gonics of these confocal quadric surfaces (ef. Vol. I,
P- 92\ The Cyclide is the envelope of a sphere, with its eentre on
a:nyohe of the principal quadric surfaces, described to meet the
cag résponding prineipal sphere at right angles.

N\ Sz 1. A confocal system of quadric surfaces, in space of three
}imensions, has four focal eonies, Thus, by what has becn shewn,
the tangent solids of Q, at the points such as K, should meet the
solid I in planes containing, not only the tangent lines of the
come o, but alzo the tangent lines of three other conics. Recipro-
cating in regard to ), this statement is, that the joins of an
arbitrary point, P, to the points K, lie on the planes of four
quadric line-cones (sce above, p. 121). In fact, K describes &
guartic curve in the tangent solid of € at 0, and, thus, lics on
four quadric conical sheets in this solid. If ¥ be the vertex of one
of these, the line PK evidently lies in the plane VPK, which
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describes a line-cone with VP as axis. This proves the statement
in its reciproceal form. '

Er. 2 Let U, T be the vertices of two quadric point-cones
(U) and (T), which contain the surface T. If a generating line,
UP, of (U}, be such that the tangent solid of (U), along UP,
touches (3, the plane UTP meets the polar plane of the line 1T,
in regard to {2, upon a certain conic. The same conic is obtained
from the cone () by a similar definition. Denote. this conic ,
by . '

The angle between two envcloping spheres of the Cyclides*sf
different systems, arising, say, from tangent solids of the.geres
(U) and {T'), respectively, is equal to the interval betweenthese
two tangent solids, measured in regard to 2 (p. 89, above); or,
equal to the interval between the poles of these soliddyin regard
to . Let these solids touch (U) and (T) alongbhe lines UK
and L, respectively s and let the planes UTK agd UL meet the
polar plane of the live UZ, in regard to £, in he points £’ and
L', respectively. "Yhe angle in question, W(&rﬂu}iﬁ%‘igﬁ%' i)
enveloping spheres of the Cyclide, is eqilMto the interva "
measured in regard to the conic . (Cf\Jessop, Quariic Surfices,
1918, p. 106.) o ¢

Ex. 3. It has been seen that thej‘Cyclide may be regarded as the
inversc of a cubic surface containiye the conic @ ; and, COHVGPSQ%’»
that such a cubie surface js obbdined by inversion of the Cyclide
when the centre of inversiod lies thereon. By taking the vertex of
the harmonic inversion, in’-}he space of four dimensions, in regard
to £, to be at the veftdx, U, of one of the point-cones, we see that
the Cyclide inverts mto' itself when the centre of inversion is the
centre of any oneygf the five principal spheres. When the centre
of inversion is arhitrary, a Cyclide inverts into another C_ych@e,

_ Ew. 4. Fopyi quartic carve, in threefold space, which is the
intersection(of & quadric surface with a quadric cone, there are four
boints of¥he curve of which the tangent line is a generator of the
cone ; ghese are the points of the curve lying on the POI’%r plane of
the wertex of the cone, taken in regard to the quadric sarface.
B;? $lpposing the curve fo be that consideret_l above (p. 177), the
nterseetion of (U} with the conical sheet of lines of ) through 0,
we see that there are four points K which coincide with the
associated poiuts, K. These will lie on the plane Whm}? is the
ntersection of the polar solids of O in regard to all quadrics con-
talning the quartic surface I. The tangent sghds of 0 at ths
four points K will meet in the polar line of this }E‘la.ne, in regal:d
to 5 and this line passes through 0. Any such fangent solic
tontains the tangent plane of T' at the col‘re-%P?ﬂdmg pomt A.
Thus, on projection, we see that there are four points of the conic
12--2
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@ at which the two tangent planes of the Cyclide coincide with
one another; and that the four tangent planes at these points
have a point common.

Taking, again, the plane which is the interseclion of the polar
solids of O in regard to all the quadries containing ', we may con-
sider the locus of the polar lines of this plane, in regard to these
quadrics. This is a cubic cone, with O as vertex. Henee, for the
Cyelide, we can infer a cubic curve containing the following nine.
points :—the five points obtained from the vertices of the cones
such as (U), these being the centres of the principal spheresg™the
three intersections of the opposite pairs of joining Jinesguf he
four points of the conic @ at which the tangent plancssof the
Cyclide coincide; and the point of interscction of &he tangent
planes of the Cyelide at these four points (Segre,’Muth. Annal.
xxrv, 1884, p. 330). N

Further, considering the intersection, with Ljef the polar solids
of 0, in regandvtathhelipiatdyior gontaining Lyand the intersection
of such a solid with Q, we can prove, for the Cyclide, that there
are o ?* quadric surfaces, cach touchingythe Cyclide along a quartic
curve, all passing through the four specified points of the conle @,

* there being one of these quartic cimiwes through any point of the
Cyclide. Fach of these curves isythe intersection of the Cyclide
with a quadric swrface passing through o, say with a sphere;
these spheres have a coramon Centre, the point at which the tangent
planes of the Cyclide, at {he four specified peints of w, co-intersect
(loc. cit. p. 337). )

For the Cyclide eXpressed by

@+ + 2y 440 + by + o) 0 4 2 (fir + gy + Ry £+ =0,

the tangent Ef“a}les coincide at any one of the four points (. ¢,7,0),
where m0-¢, F=ec—a, r*=4-5b; and the tangent planes at

these fat points interseet in (0,0,0,1). )
anTocal Cyclides. An envcloping sphere of the Cyclide was
obtglhffd by projecting the section, of Q, by a solid which touehes
. \?n\e of the ant-cones (T7). Of such solids, however, there is &n
infinity () which also touch ©; and the locus of the points of
contact of these solids with £ is an jmportant curve. We denote
this curve by g Consider, in the principal solid which is the polar
of the vertex U in regard to £, the quadric surface in which this
polar solid meets {2 this quadrie surface we denote by [2]5 and,
3150, ’Qhe qugtdnc su1_'fa,cc in which this solid meets the cone (U)
denoting this quadric surface by [U]. The quadric surface & (U
n this solid, is the polar reciprocal of {UJ] in rvegard to [Q} A
E“g‘enF solid of  which touches the cone (I, as it passes throngh
e point U, must touch Q at 5 puint of the quadric sarface [{2)s
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and must also touch the quadrie surface [U} This tangent solid
thus meets the prineipal solid, which is the polar of the point U,
in regard to €3, in a common tangent plane of the quadric surfaces
(0], [U]. The curve ¢ is the locus of the points of contact, of
these common tangent planes, with [Q]; it is a quartic curve,
being the intersection of {Q] with @ (U). When we project from 0,
on to the solid TI, the quadric surface [0}] becomes a principal
sphere, and the quadric surface Q (U) becomes a principal guadric/
surface, Q. Thus the curve @ projects into the intersection of these®
Such a curve, obtained hy projection of g, of which there are five
in general, may be called a focal curve of the Cyclide. The gection
of {), by a tangent solid of the cone (U) which touches £ is a
conical sheet of Iines, of which the generators meet thelgenerators
of the conical sheet of lines of 3 through O (p. 38,.above) ; thus,
the projection from 0, on to the solid IT, of.this section, is &
quadric cone passing through the conic w; the yeM#x of this cone
i a point of the quartic focal curve, ¢, abtaing by projection of 4.
Such a cone, when w is regaded as thww@stﬂu&amﬁrﬁp{jg gf 1
called a point-sphere. The focal curve gdan then be said to be the
locus of the vertices of point-spheres wl%ose section with the Cyclide
consists of two circles (which touch ene ‘another).

It ean be shewn that if, upon a sphere, of a threefold space II,
that is, a quadric surface passing) through a given conic, e, of this
space, there be given a quartie curve, ¢/, the intersection of the
sphere with another quadfic® surface; and, also in this solid II,
there be given a point, K" “then, three Cyclides can be construeted,
containing the point®lF, all having the curve ¢’ as focal curve.
Further, that the thpgent planes of any two of these Cyclides, at
any point commofl X6 both, are at right angles; that is, that these
tangent planes(tpeet the plane of the conic w in lines which are
conjugate 1o ghe another in regard to this conic. It can then be
shewn, fll‘&ﬁhér, that only these three Cyclides are possible under
the givenNconditions. The corresponding result for curves in a
planaisiproved above, p. 95. For, in a fourfold space containi
the(solid 11, take a point, @, not itself in II; consider the conica
sheet of lines joining O to the given conic w. A_qll&dﬁc, Q, can
b& described containing this comical sheet, this being any quadric
whose section, by the solid which is defined by O and the plane
of w, consists of this conical sheet. Next, consider the quadric

o ich i cate of the lines joining O to the
pomt-cone which is the aggregate c}; 3 wiell meetJthe quadric @ in

puints of the given sphere in Ir. T I !
a quartic surface; part of this, however, is the quadric sui{'fz.];:e
constituted by the conical sheet Ow; the remaming part of the

intersection is then another quadric surface. Thus, assumin idth\:Z
>

& quadric surfuce, in fourfold space, necessarily lies 1n a so
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can regard the given sphere, in II, as the ﬁ;rojection, from O, of
the section of {1 by a solid: denote this solid by d». The curve
g, on the given sphere in I, is the projection from O of a cuvve,
say g,'(liying in the section, with Q, of the solid & ; this section is
a quadric surface, .and the curve g, like g, is a quartic enrve
Let the pole, in regard to 3, of the solid @, be the point U,
supposed not to lie on ; also, let the line OH" meet O again in
the point H. The polar plane, in regard to Q, of the line UH,
will lie in the solid @, which is the polar solid of U': denefe this
l;zlar plane of UH by . We know that, in the solid &, (thebe can
drawn, through the curve g, three quadrie surfaces t touch the
plane 5 (Vol. ur, p. 120); the polar reciprocals ofithese quadric
surfaces, in regard to {3, are three quadric point-gones, with vertex
at U'; these cones touch the tangent solids of 0%t ihe points of
the curve ¢ (which lies on ), and contaj\bhe line UH. The
intersection of ), with any one of these tl(ee point-cones, projects
from O, on o, T} dinteulidtyelidehaving, the “given curve ¢ as foeal
curve, and passing through H’. This %vjves'the existence of three
such Cyclides. o \4
We next prove that any twolof“these cut at right angles (in
regard to w, as Absolute conid)pat their common point H':—The
planc 4, polar of the line UHAIN regard to Q, is the intersection of
the solid @ with the tangent solid of Q at II. Thus the plane 3
contains the conic, in{which the solid ® is intersected by the
conical sheet of lilles}of' {1 which pass through H; this conic is
also on the quai{@’ﬁurface (£}, ®), upen which the curve g lies;
denote this conic by 2. It is known that the three points of contact
with the plang.a, of quadric surfaces, in the solid ©, which contain
the curve gufind touch 4, form a self-polar triad in regard to the
conic seetton of % with any quadrie surface, in @, containing ¢;
thesc/three points of contact are thus a self-polar triad in regard
tothe”conic %, which is the intersection of the quadric swiface
(£ @) with the tangent solid of } at H. The polar solids, n
Tegard to 0, of these threc points of contact, are the tangent
solids, at H, of the three point-cones, of vertex U, above drawn
through the line UH; the polar plancs, in regard to 0, of the
~ lines of the conical sheet, of lines of O through H, are the tangent
planes of this same conical shect. Thus, reciprocating in regard
to {1, the tangent planes at the point H, of the three surfaces in
which (0 is met by the three point-cones above drawn through UH,
are conjugate in pairs in regard to the conical shect of lines of £
’;}u‘ough H. On projecting from 0, since every line of Q through
th meets 2 hfne of £} through 0, we obtain three Cyclides throug?
¢ point B, of which every two have their tangent planes, at H,
at right angles in regard o the conic @, regarded as Absolute
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conic. By a similar argument every iwo of these surfaces cut at
right angles at every one of their common points.

And, as in the corresponding case of a quartic curve in a plane,
it was proved (p. 95, above), that there were only two such carves,
so 1t can be shewn here that there are only. three Cyclides subject
to the given conditions.

Ewx. 1. Let the Cyclide be the projection of the intersection of
the quadric O given by 2+ 3+ 2° 4 £ + w2 =0, with a quadric

given by ar® + by + e + dt* + ew? = 0. Then the coordinates, @,

s By By 2y, Of & point of 2 whereat the tangent solid touches the
point-cone (U), of vertex (0,0, 0,0,1), containing the intersectign
of these quadrics, are such that N\
=0, a2 +y '+ 5+ il 0;
(@~ a4 (- gt (e — &) 2 H{d—e) =0,

Thus the curve ¢, and the focal curve, ¢/, obtained, by projecting
this, depend only on the differences of a,b,dpe” A system of
Cyclides with common foeal curves are\dh;&!{‘&ﬁmmgk‘é%.gyg,%e

projection of the intersection of R
P gtz b =0, (@A) e+ (0N ¥+ e+ AT =0,
where X is arbitrary. The condiqunfthé,t two s_uch Cyclides, given
by the values, A, A, of A, shoild cut at right angles at the
common point, (,, g1y ---» % S (p. 39, above) that the tangent
solids (@ + A T aw, + ... =0, (BNt + ... =0 shouid be con-
Jjugate in regard to 2. This'eondition is
(@ @+ M) i+ =0
1t is & consequencd o.f\he two equations
(a4 )T i+ ... =0, (a+r) 2+ ... =0

The condition™that a Cyclide, of the confocal system obtained,
should p%s"t‘hmugh an arbitrary point, is a cubic equation fm;ih.'gd
Ez, @\ Through any point, H, of the %ua.rtlc surface, I', deﬂp
a8 the'j:mterscction of the quadric &, and another quadric, f {ha
line\tiay be drawn which is the polar, in regard to 0, 11} in
‘taigent plane of T' at H. This line is the locus of thfzd?? ¢ (say
¥egard to 0, of the tangent solids, et H, '?f a.ll the quacrics (slagj(
00 + ¥ = 0) which contain I'. The line lies in the tangent so lf
of © at H ; and is the polar line, in regard to the con 'sheiat o
lines of O through H, of the tangent plane of [ at q, tgl?)p:l};’
and the conical sheet, heing both in the tangent SOhdc{l)'d ?‘ the
By projection of T, from a point 0, of (, mto & Cy ‘tﬁ of t :
solid [I, this line becomes the normal qf the Cyelide at?h teanpmgt

arising from #H; namely, the line which is conjugate to ihe tange

N\
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plane of the Cyclide with respect to the Absolute conic . If H
be {zy, 25, 2oy by 1)y and @ he & + ... + 22 =0, while (2" 1s

art + ...+ a=10,

the general point of the line in question is (£, &, v), where
E=(a+t)m,...,u=(e+8)u, the # being variable. The line, 8
we see by taking polars in regard to (, touches all the quadrics
which are the polar reciprocals, in regard to £, of the quadrics
ML 4+ =0; that is, it touches all the quadries
(B+M) 1. FleF )=, O\

except two of these, upon which it lies entirely. These tivo “are
those for which ) satisfies the equation \

(@422 + 4+ e+ A) T =0, ,
which is a quadratic in virtue of A\ N

N,
77%G

‘Tuz+"' +u02=03 M'ﬁg“‘...‘l- -?102:0.

The tangel\ﬁwi‘a?ﬂqll( r?)%hﬁl “at Htouches "eﬁ' one of these polar
reciprocal quadrics, at points of this 1Mc)" In particular, however,
when A has one of the five values — &Y., —e, the linc mects the
corresponding locus, now become ajynadric surface, only once; in
the point in which the line meaty the principal solid in which this
quadric surface lies, O

The aggregate of all the potmts of all such lines, when (o, #ss-- -5 th)
becomes, in turn, all pointshof the surface 1°, iz a ruled locus of. W
points. By substitutigny'ef z, = (a + A)~'E, ete., in the equations
Zf oL hul =0, af @+ eut =0, or by the geometrical property
of the lines, we Bec that the equation of this raled locus can be
formed as the digepiminant, in regard to A, of the equation

O @+ M E 4 ke 4 )0t = 0

80 that thetlocus is of the twelfth order. Thus, on projection, we
mf:er %ﬁ twelve normals of a Cyclide pass through an arbitrary
points The line of the w* ruled locus, through a point, (@, ...s s
%ihe curve in which the surface I' meets the quadric

) (@08 + 4 e+ 0k =0,

lies entirely on this quadrie, as already remarked, In particular'a

for A=, the lines of this locns which meet T in the curve given
by ‘a:.f+ st =0, arz+ .. 3 eu?=0, @rl+ ... +cu2=0, lie
entirely on the quadric ©; such lines form a surface, lying on {1
of order 2.12-2.4, or sixteen. The lines of this surface are
obtainable, also, by remarking,

T at any point P, there are tw
of this tangent plane with the

first, that, in the tangent plane of
0 lines Iying on Q, the intersection
conical sheet of lines of Q through F;
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and noticing, then, that, when P is on the curve whose equations
have been given, the tangent plane of T touches this conical sheet
along a line of points, with coordinates (@ +2\)y, ..., (€ +X) 1.
Thus, the tangent plane of T', at any point of this carve, is also a
tangent plane, at another point, of the surface in which £ is met
by any one of the quadrics {a+X)"'2*+ ... + (e+2) 0w =0. For,
this tangent planc of I" lies in the tangent solid of {} at every point
of the line whose points have coordinates {@+ X) @y, ..., (€+A) 23
and lies in the tangent solid of the guadric

{+ A+ ..+ e+ Ay =0, O\

because this, being the tangent solid of () at the point (a%, %, )
of the curve, touches the line at this point. The curve in q}‘jeétion,

@B+ tog =0, ax]+ ... e =0, ... +Oefu}.2 =0},

lies also ou the polar reciprocal of the quadric 22 +"’\\+ w=10, in
regard to the quadric @2 + ... +ew?*=0. On projéction, the focal
curves of the Cyclide appear as lying doub) y‘.%th,e developable
surface formed by the tangent planes of the EVAME A pehstinof
the conic w, these planes touching the copfokal Cyclides.

We may, however, go further. Of thp ot lines, forming the
S_urﬁwe of order sixteen, spoken of, ‘]ving on ), there are sixteen
lines wlich lie on 1. Por the line of,points of coordinates

{a+n) wn,,.;.;:,’ le +A)uy,

will ie on a2+ ... + e =0\ if, beside the three eguations for
(24, <oy Uy), we also have g")‘a"’ + ..+ u2=10. The four equations
have sixteen solutions% 4 we denote the quintic pelynomial, in £,
whose roots are a, bpe, d, ¢ by £(#), the four equations are satisficd
by a2 f" (@) =2 by = ... =uf" (¢). The curve, of order cight,
for which 2,2 3 2NE 0, an®4-... =0, a?x? 4 ... =0, 1s expressed, in

terms of psy\zﬁthqéter 8, hy
TR0+ @] Ly w= (@[S O]

the poitifs of any one of the sixtcen lines of the surface I' are

Brepdy o= (0 4 DL (@]}, .., = O)[F (@] 2, for vary-
Q%Walues of x. Here £’ (x) denotes dfjda. LF @l ’

Lore generally, in space of » dimensions, in which @, ..., @pq
are the coordinates, we may consider the surface given by the
(?3-9) equations, @ a? + ... + @ty n="0, for r=0,1,...,(n - 8).
Upon this there is a curve, of order 2# and genus 2" 2(n - 8)+ 1,
given by these cquations together with

a"2e ...+ a;:_;?;t"n_i_] =10,

of which the points have coordinates of the forms

CETALIV MY o A
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where f(f) is the polynomial having @, ..., @ for roots. This
leads to the consideration of 2% lines of the surface, each consisting
of points of coordinates such as ;= (A +a;) [/ (@))% Tor the
case n=3, cf. Vol. ur, p. 92. The case =15 arises in Chap. v
below (p. 231).

Ez. 3. It is not a difficult matter to obtain the lines of curva-
ture upon a Cyclide. We do this by a method which is, in part,
applicable to any surface. The question is, however, of specig)\
interest here beeause, as will be seen in Chap. vu {below, p, 230,
these lines are in correspondence with the inflexional lingswof
Kummer surface. O

At any point of a surface, in space of three dimensipus, two lines
can be drawn, in the tangent plane at this point, sshich meet the
surface in three coincident points there. These are“the inflexional
directions. If the point be (&, ...), and the sutfaeé be f(z,...}=0,
the lines are found by combining the tangent'\plane with the polar
quadric of th¥ potBEaYHbERT HPIBAR, = 0, whete D is the operator
#fxe+ ..., and f, the value of £ atfmy .. ). If any spherc he
drawn to touch the surface at the pp‘iut; its inflexional directions
give two other lines lying in the\tangent plane of the surface.
The directions of the lines of ®urvature of the surface, at the
point, are along the two linesgan the tangent plane, which arve the
double rays of the involutien determined by the two pairs of in-
ﬂexiona] directions which{we have spoken of. In fact, the curve of
intersection of the sphere’ with the surface has a double point at
the point of contautf,:;\:}hose tangent lines lie in the tangent planc,
and form a pair of the involution in question; there are two such
spheres for whieh.the curve of intersection has a cusp at the point:
;c:he two cuspida[ fangents are the directions of the lines of curva-
ure. e \

. \’V%@xve these statements by regarding the surface under con-
sidetation, in the threefold space, LI, as obtained by projection,
upen I, _of the intersection of a quadric (), 2, lying in a space
(ot Your dimensions, which contains IT, with another (oo %) locus, &,

\lying In this fourfold space. We shall speak of 0 also as a
quadric, so that the direet application is” to the Cyclide. "The
centre of projection, 0, is on {}; the point of the surface ({2, ),
which we consider, is denoted by P, and its coordinates by (2a
Yoy Zo fu; #,); the tangent solids of  and O at P are denoted by T
and 7. We take solids, 67+ 7", passing through the tangent
plane, (T, T’.)’ of the surface (0, ), at the point P. These solids
mutersect {} in surfaces which project, from 0, into spheres in the
space 11, the Absolute conic being the intersection of II with the
conical sheet of lines of O through O, There are two lines through
P, the intersection of the plane (7, T") with the cone (T, £2), n
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which the solid €T + 7" meets the conical sheet of lines of £
through P these lines meet the conical sheet of lines of £ through
0, and project into the generators, or inflexional lines, of the
sphere into which the surface (87 + 77, 1)) projects, at the point
which is the projection of P. These two lines lie in the plane
(7,77, and arc mdependent of 8. The solid 7+ 7V meets the
surface ({2, {1') in a curve; ' being a quadric, this curve, lying on
the quudric €4 + V', lies on the conical shect (87 +77, 80 4 Q)7
the solid 7'+ " being the tangent solid of 60+ Q; the curve
may be given as the intersection of this conical sheet, (67 AL
80 + 07), with the quadrie . Thus, the curve has a doublepoitit
at P, whose tangent lines arc the two in which T meets the &onical
sheek; that is, thesc tangent lines are the two lines if which the
quadric 8} + Q' js mct by the plane (T, T’). For différent values
of f these form an involution of pairs of lines idghat plave, inter-
secting at P, They project, from O, into the fangent lines of the
curve in which the surface, obtained by thespréjection of (Q, Q'),
is met by a sphere touching this surfacd@viher prbifeetionoo. .
For the pariicular value of @ for which\the solid 6T + T’ contains
the point O, 1his sphere is replaced, by/the tangent plane of the
suface obtained by projection of {2, Q'), and the tangent lines
become the inflexional direction®of this surfacc, For the valve
8=, we have the two linespdirst considered, in which the plane
(7,T") mecks €2, which project’ into the common generators of all
the spheres. For five parfiedlar values of 8, the quadric #Q+ 0
becomes a cone, and pvelhhve, on projection, the tangent lines of a
pair of conics of thﬁQEchlide, throngh the peint into which P
projects, O
There ave, alsg) two values of 8 for which the tangent plane
(I, 77 rcets, @0 + O in two coincident lines, namely, the plane
(T, 6T + Ty {duches the conical sheet (8T + T7, 80+ ). I_-“Or’ we
know thit bhe tangent planes of this cone are the intersections, of
67 +;ﬂ.f,q\with the tangent solids of Q-+’ at points of this
conjeal ‘sheet (p. 88, above). Thus, for the plane (T, 67 +T7) to
AQch the coneal shect, it must be identical with a plane (K,
0?4+ T ")y where K is the tangent solid of 80+0 at a pomt,
@y, 37:,...), of this comical sheet, Now, if 2, be, respectively,
Pt wt=0, ga® + ... + ew? =0, the condition, that the planes
[(a+ & am +...=0, (¢4 xz,+...= 0}
. [(ﬂ+6)wm1+...=0,.2?:Tg+...=0]
should ‘he identical, is the existence of equations of the form
(@+8) @ = p (4 + ) 4, for each eoordinate, for proper values of
¥ and p; or, if 2, = @, — pa, ete., that (g + 0)m=p (¥ = 0) 2o, ‘:flc“
o1, say (@ + 8) &, = gm,. The condition that (#,, .-.), and hence also
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(@35 ...), should lie on the conical sheet, requiring
{(a+ D+ ...=0, (a+ Doz +..=0,

is satisfied if % (6 + 8)73+... =0, in virtue of a2+ ... =0. As we
also have az?+... =0, this equation for 8 is only a yuadratic;
denote its roots by X and u. Then the curve, in which the surface
(@, &) is met by either of the two solids AT + 4", w7+ 7", has a
cusp at P. The two cuspidal tangents give, on projection, the™
cuspidal tangents of two eurves in which the Cyclide is met butwo
spheres. These we define as the directions of the lines of cusyattre.

The surface (2, (1), if (¢} be the quintic polynomial whose roots
are a, b, ..., e, has the coordinates of its points (z, 7, .. Jlcpresented
by equations #*=(a + 8){(a+ &)/ f (@), ..., 1w = (e + P)e ¥ &) F (0);
the values of 8, ¢ appropriate to the point (z, y,.8.Y arc the roots
of the quadratic equation 2 (g + ) + ... + wl{bt 6)2 =0, If we
pass, along the curve of the surface for whiq ¥ is constant, from
(@, 9, ...) todpodiaglibiify.odgin have di="Ywde (a+ ¢) 7, ete;
namely, the tangent hine of this eurve ig«thcline from (z, g, ...) to
the point (2 (a+¢), y(® + ¢y, ... )N\ This tangent live is then,
by what we have proved above, the\ciépidal tangent of the inter-
section of (0, (V') with the solid T + 7", where 7', 7" are the
tangent solids of 2 and Q' atithe point considered. Thus, !;he
curve along which 6 is constauthas its tangent line along a direction
of curvature, at every pointyabut the osculating solid (and consequer}t
sphere) has a parameter. 4 ‘Which varies from point to point of this
curve, \ ) :

This resnit, aftel\what is proved above, is in accord with a
theorerr_l, associated with the name of Dupin, that if, in space of
three dimensions; three surfaces he such that every two of them cut
at right angles,'in regard to the Absolute conie, at all their common
points, then; at a point common to all the surfaces, the tangent line
O_f the\ mon curve of any two of these surfaces, is the tangent
ling Gf*l line of enrvature on each. In particular, 2 Cyelide is inter-
setted in a line of curvature by any onc of the five principal spheres.
O N\Ex 4 Tt was remarked that the line joining a point, (@, ¥, )

of the surface T, or (1), '), to a point of coordinates (a-+ ) o
(b+y)y, -++» becames, on projection, a normal of the Cyelide. This
line 1s, evidently, on projection, at right angles to the line, con-
sidered in Ex. 3, Joining (2, 3,...) to the point of coordinates
@+ Pya, ¢4y Yy .. Cousider two points (@, ¥ ---»
(@ + dx, Y+dy,...), of T, on the curve given, for constant &, by
the equation (a+ )22 4 ..., 4 (e + 8)'u? = 0, these points corre-
sppqdlng to values o, ¢+ dp, of the sccond parameter, ¢, deter-
mining points of I, as in ¥x. 3. Corresponding to the first point,
take the point of coordinates {a+Pp)a, (& .|.3‘,)y, ...; this is, In



Theorems for lines of curvature 189

fact, the pole, in regard to Q, of the tangent solid of ¢ + Q' at
the point (@, g, -..)» and projects into the centre of the sphere into
which the surface (£, ¢T + T”) projects. Corresponding to the
second point, take the point of coordinates (a + ) (x + dr),
B+yyy+dyh s where i = ¢ — 3dp. Since de =Ladd(a+ ),
we have
(6+¢— ydp) (2 +dey=(a+d—3dd)[1+3(a+$)ddlx
= (a+ $)z — §dpde.

Thus, on projection, we have the result often expressed by saying™),

that the normals, at two conseeutive points of a line of curvature,
intersect one another. These normals, that is, form a develgpable
surface, whose cuspidal edge (Vol. w1, pp. 131, 182), ordedge of
regvession, is the locus of the centres of the osculating spheres.
Ex.5. By considering when the two cuspidal directions obtained
in Ex. 3 can coincide, prove that the lines of the surface " lic on
the quartic locus, obtained as the discriminant,inrregard to 6, of
the quadratic equation (e + &y 2%+ ... ﬂ'ﬁs’K alplbatiog. étg.in
( Qp + 1) = 442, (Pzﬂ-f‘} 2,
where R ™
Qo=ae’ + ...+ ¢, o=+ _..,:—:ffb’,' P =ab+ac+ ... +de,
Ez, 6. By inversion of a suyﬁi’ce’ in threefold space, a line of
curvature is changed into a line of curvature of the mverse surface,
Ez. . Consider, in threefold space, whose Ahsolute conic is o,
a curve, v, lying upon g strfhce of this space. The tangent lhines of
this curve o meet thejv}anc of the Absolute conic in points, T,
deseribing a curve, 74 of this plane. The normals of the surface, at
points of the cusy®’s, that is, the lines conjugate to the tangent
planes in regard $9"the Absolute conie, meet the Absolute plane in
peints, N, deseéibing a curve, », of this plane. If, for every point
of the curyeMy, the tangent line of the curve v, at the pomnt N,
passes thiwugh the corresponding point, T, of the curve 7, then the
curve wils a line of curvature of the surface. The condition may
he-expressed briefly by saying that the curve defined by the normals
aturve of pursuit of the curve defined by the tangents.

_£x. 8. Two surfaces, in threefold space, are such as to cut at
right angles at every point of their curve of intersection, which is
known to be a line of curvature on one of the surfaces. Considering,
n the Ahsolute plane, the curve enveloped by the tangent planes
of one of the surfaces, at the points of their common curve, and the
like curve en veloped by the tangent planes of the other surface, at
the points of this eurve, shew that these curves are polar reciprocals
of one another i regard to the Absolute conic.

£z, 9. If aline of curvatwre of a surface, in threefold space, be

Q!
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a plane curve, prove that the tangent plane of the surface at points
of the curve is at a constant inclination to the planc of the curve
(with respect to the Absolute conic). Deduce this by proving that,
if the normals of a plane curve, defined as lines conjugate to the
tangent lines with respect to an Absolute conic of the plane, all
meet in a point, then the curve is the locus of a point which is ab
a constant inferval from the point of intersection of the normalgs
the interval being defined by the Absolute conic (as in Vol T,
pp. 168 4L). oA
Ex. 10, If the tangent plane of a surface, in threefold gpaceat
a point (&, ¥, z, t), be expressed by IX +mY +nZ £ pI=0, an
inflexional eurve of the surface satisfies the differentiahcquation

dedl + dydim + dzdn + didp = 0-8"

If 1, my m, I,y ' be the line coordinates of th¢utormal of the sar-
face, a line of curvature satisfies the diﬂ'ergn'bihl equation

www dbragBpra el Y dudnl= 0.

More generally, while the lines of a tuled surface, in space of three
dimensions, are represented, in spatc of five dimensions, by the
points of a curve lying on the fuddamental quadric £ (p. 40, above),
the lines of a developable sutfaee, or the tangents of & curve, in the
threefold space, are represented by & curve ou 0 of which all the
tangent lines also lie on £

The matters discussed In these Examples arisc again below, in
Chap. v (p. 252 AYor a farther generalisation see LDarboux,

~  Théorie...des Surfapes, Livre viL, p. 485, § 840,

In regard\fo some particular cases. T'he Dupin Cyclide.
In considering the quartic surface, in the space of four dimensions,
as the intersection of two quadrics, we have generally assumed that
the twisqadrics are general, so that therc are five quadric point-
couetzfgassing through the snrface, whose vertices form a self-polar
peptad for the quadrics, In this case the equations of the two

¢~quadrics can he supposed to be of the forms, 2%+ ... + u* =0, and
@2 + ... +eu® = 0, in which no two of the coefficients a, b, ..., ¢ are
equal. And we have given the centrc of projection, by which we
pass to the Cyclide, a quite general pusition: In this Volume we
$1° not enter into the discussion of the possibilities which can arise
in less general cascs; Segre (Math. dnnal. xx1v, p. 440) cnnerates
more than seventy. We make, however, some remarks, with the
alm of indicating the nature of the speclal cases ; and, in pari;icular,
on account of its historical and intrinsic interest, we shew how
Dupin’s Cyclide can be obtained,

{a) It may happen that, through a surface, in fourfold space
which is defined by the intersection of two guadrics, which are cones,
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there passcs no guadric which is not a cone. In other words, if
U=0, 7 =0 be the given quadric cones, it may happen that the

diseriminantal determinant, of five rows and columns, of the quadric

U+ 2V =0, vanishes for all values of A. To illustrate this possi-
hility, suppose U = o* 4 22 + u? — due, V' =yx — s, each of which, as
depending on four linear functions of the coordinates only, belongs
to a cone, We then have

U+aV=9pp+ryetattulu —1—2x);

for every value of A, this likewise depends on four linear functions
of the coordinates only, and also belongs to a cone. A\

The projection of the surface (U, V), in this case, from thepoint
(0,0,0,0,1), gives, in the space (@, %, 2, 1), the surface whosé equa-
tion is 3725 + 227 4 ay* — qyat = 0. This is Steiner’s gipartic surfoce
{Val. 117, p. 222) ; its properties can then be deduced by considering
the surface (U, 7). The cones U= {0, ¥ =0 haveaeommon tangent
solid at every point of the line joining their vebtices, and the pro-
Jeetion is made, on to this solid, from a pWiEsibnmel dfithy erpesn

‘Ihe Steiner surface may also be obtained by projecting the
Veronese surface, in space of five diieiSions (p. 52, above), by
means of planes passing through a line’ which does not meet this
surface, RN

(1) When, beside concs, thefesis at least one general quadric
containing the surface, say U/*=0, the discriminant of U +X¥, not
vanishing identically in pégard to A, vanishes for, at most, five
values of A, There arethen other quadrics which are not cones,
beside U = 0, contaidifig™the surface. Let P = 0 be such 2 quadrie.
Then, two cases arppossible.  Tither, there is nof a point, common
to the quadries P, I = 0, at which these have the same, definite,
tangent solid ;(by there is such a point, or several such. We skeich
now, incompl@ely, a proof tbat, in the former of these cases, the
equations b{gﬂv:" 0, ¥ = 0 can be supposed to be of the respective
forms g% y2 4 .. 2= 0, a2 +by? + ...+ e =0, in which no two
of the.éotfficients a, b, ..., ¢ are equal, This will then be the general
cast¢Onsidered above. In fact, under the hypothesis made, there
will'be at least one point, not lying on U =0, nor on V=0, for
Which the five ratios, respectively of 3U/ox, oU/0%, ..-s U (0u to
OF (3w, 5V |3y, ..., O |ou, are equal. If we change the notation :do
that this point becomes (0, 0,0,0, 1), and its polar solid, in rega
to either U = 0, J'= 0, which is the same for both, bemﬂ:es u=0,
then the equations of the two quadrics take the forms +¢%?,
o’ 4 v = 0, where ¢, { are quadratic forms In 2, %, % ¢ 0;'51 T Oe
quadric surfaces, ¢ = 0, ¢ = 0, regarded as lying I the 5011 u="
will not have a common point at which their tangent planes co-

incide; for then, the solid jeining this plane to the point (0,0,0,0,1)
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would be a common tangent solid of the two original quadrics, at
a common point. And the discriminant of ¢ + +r is not identically
zero. We can thercfore apply a similar argunent to =20, =0,
reducing them to the respective forms #2+& =0, dt*+9=0, where
g, 7 are quadratic forms in a, %, 2, only. Aundso on. Thereby U,V
are reduced, respectively, to forms #®+ ...+ % av’+.. +ad
Herein, however, we cannot have, for cxample, d =« since, then, .
the quadries U= 0, ¥ =0 would have the common tangent solid™\
t + i =0, at the commen poiut (0,0,0,1,3).

(¢) Suppose now that U =0, ¥ =0 have a common pointy &bhigh
we may take to be (0, 0, 0, 0, 1), and, thereat, a definile Cotnmon
tangent solid, which we may take to be ¢ = 0. Their gqj‘m}c“mns are
then capable of the forms wt+ ¢ =0, ué +y =0, whierelig, ¥ are
quadratic forms in , g, %, #, only. The surface of futerscction of
the quadrics thus lies on ¢ — - =0. This is, thep either a point-
cone whose vertex is (0, 0, 0, 0, 1), or a line-coe"whosc axis passes
through thisy podibtaclilargraiorg isolids, ot a\}'mgle repeated solid.
In all these cases, the projection of thelqtartic surface (U, ¥),
from this point, upon any solid, is a guadric surface, of a general
or particular kind. Thus the Cyelide arising by projection of the
surface (I, V) from a general point, say, of U =0, is oue which is
the inverse, in the solid upeniwhich we project, of a quadic
surface, of general or of partigmlar kind. It is clear that there are
many cases, p

(d) In what has preeded, we have spoken of projecting the
guartic surface of fi liffﬂid space, into a Cyclide, from a ccntre of
projection lying on (akparticular quadrie which contains the sutface;
and have used $his)quadric to define inversion in the space of the

Cyclide. In jgéfiéral, as a single quadric of the form Uav=90

passes through' an arbitrary point of the fourfold space, this is
ef{ullVH-gzzt\to defining the Cyelide as arising by projection from an
arhitraxny point of the space. If we do this, however, special ecases
maygrise, For instance, it may happen that the quadric, of the
famnily U +2F =0, which passes through the centre of projection,
{37 cone. Then it is easy fo sce that the surface of the fourth

order, obtained by projection, in place of having a double conic‘of
general kind, has two glouble Kines, which may coincide. Or, again,
1t may happen, when the surface in the fourfold spacc lies on &
linc-cone, that the tangent solid, at the centre of projection, of
the quadric, of the family, which passes through this point, 18 &
tangent solid of this line-cone. In this case, while there may exist
a _dﬂu}ﬂe conic for the quartic surface obtained by project.inn, it
will be such that the tangent planes of this surface comeide at

every point of this conic. The double conic then becomes &
cuspidul conie,
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(¢) For historical and intrinsic reasons, some account may be
givenr of the casc in which the quartic surface, in fourfold space,
lies en one, aud, ore particularly, on two gquadric line-cones.
The former arises wheu the sarface is given by two equations of
the forms & + g* + ... + w* =0, ga* + by* + eu? =0 ; the latter arises
when, further, a=#4, the second line-cone containing the surface
then being a (=% +¢*) + (@ — ¢} w* = 0. The latier surface projects
into what has been called Dupin's Cyelide (Dupin, Applications de
géométrie et de méchanique, 1822, p. 200). This surface is in pointy
correspondence with the Tore (or dnchor Ring); and either can
be inverted into the other, or into a guadric cone of revolution.
Beautifol stercoscopic diagrams of forms of Dupin’s Cyclide a¥e
given in Maxwell's Scientific Papers, Vol. 11, p. 158, Ao

Consider fivst the case when the quartie surface in fourfold space
lies upon only one quadric line-cone. 'This cone, theh, arises in
place of two of the five point-cones existing in\hg general case.
The axis of the linc-cone meels a general quad¥ic of the family,
say the quadric Q, in two points, say M‘&M@E‘Yaulﬁ%?ﬁd? ‘g
from a point, 0, of 2, these hecome tw ‘double points o the
resulting Cychide. A tangent solid of $he line-cone, which touches-
this at all points of a plane, meets 8Jin a quadric surface; on
projection, we have a sphere touchifig the Cyclide in‘the points of
a circle, passing through the tw@idouble points. The centres of
such spheres lie on a conic; #his is the projection of the conic
which is the polar reciprocal, of'the line-cone, n regard to {}; the
plane of this conic is the(projection of the pula;flaney n f‘f'f,‘:afd
to £, of the axis of the {ilie-cone. The two coni ; shegts, of mes
lying upon £}, passing\}hrough M and N, respectn'el_y, mtergect in
a conic, lying in tHeypolar plane of the axis of the Ime-‘cone; thfs
plane is 1 theyddlar solid, in regard to (1, of every point of this
axis. Thus, oh projection, there is a circle, lying i the plane

which biseafd, at right angles, the line joining the. two doyb]]e
points of\the Cyclide. Every sphere passing through this circle
has itsfechtre on this joining line, and the Cyclide inverts inte
itsclf SR rogard to this spherc. In particular, there is one such
’J‘Pfﬂ:}e which reduces, beside the Absolute plane, to a plane; so
“that there is a plane in regard to which the Cyelide is symmetrical.
- It is possible to find points, H, not lying on £, such .thsiF the
peints, M’, N', in which the lines HM, HN meet O agalr;i ie on
the tangent solid of © st the point 0. For, let HO meet v
InG;if M be a point on the tangent solid at 0, thg line ts 0
lies on 0; the plane, HMO, meeting O in the line OM', mee a]'d
in ancther line; thus, MO’ is on 4, or O’ lies on the tangent solic
. e e if N’ be on the tangent solid
at M and conversely. Similarly, if N be Telce, then,
at O, the point Q' lies on the tangent solid at N e, . >
1

B, G. IV,
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for U', any point of the conic, on Q, which is common to the
tangent selids at M and N for H, take any point of the line 00,
This point, H, can be used for the centre of the harmonie in.
version, in the fourfold space, which gives rise to Inversion, in
regard to a sphere, in the threefold space upon which we project.
Thereby it is shewn that the Cyclide, obtained Ly projection of
the quartic surface which is the intersection of € with the quadric
linc-cone having MN for axis, can be inverted, in the threefold™.
space, into a Cyelide having two double points on ihe Absglute

conic, the centre of inversion being any point of a cortain, &ele.

It is a simpler remark that a point H, not on £, can be taken

on the line OM ; so that the Cyclide can also be inverted into a

quadric cone, : "G

Ex, 1. Consider the quartic surface given by\ctl'lc cquations

4 L +uwr=0, ar’+ b+ ...+ e = O dénote the former

q{:}adric by Q} ; let O, of coordinates (205 Y ,\0% W,), be any point

of Q. Also,let 4, B, . D tively, detiote g — e, b —¢, c— 8,

d—e, and Y ’»@?wlﬁiaa%%%&%dy’ ﬁg@iﬁe a—d, b—d, c—d,

€—d, so that B'+ D=0. The quarfié_sirface thus lics on the
two point-cones W

AP+ Byt 4 DE =0, 481 By 4 ...+ Ew =0,

We have, identica]lly, N\

(42* + By + 22 - D)\ A + By + Czy7 + Dt
_ R\ — (daa, + Byy, + Czz, + Dit,»
equal to : &«

[ (BOE + J(Ap)%]ur\{m’(caﬁ +m (BDP |+ [ (AR 4 n (CDYY,

where I = ta, x %2, U=y, — gz, cte. Let this last be denoted
by U. Weothiis infer that, when (@ g, ... ) lics on the guartie
surfs.ce\\y‘e\kmve'

K Ax@,+ Byy, + Cuny+ Dity = (— U

I'f',j’f"(_lenobe what U hecomnes when, for 4, B, C, D, are put,
~respectively, 4, B, €, E’, and, for I, m, n, are put, respectively,

Yy — Uy, WYy — uyy, ux, — %%, we similarly have, on the quartie

surface, i

. Azxy+ By, +C'x, + B, = (— P,

Thus, if T' denote a,

] T+ ¥Yo + 2% + 1, + 2wy, we have, on the quartic
surface,

| @—e)T=(— U — (— Py,
In this equation, T=0,0=0, 1=

‘ O’ te., — r =1}, ete,, all
represent solids passing through th ete., wr, — wyr = 0, ete

e point @, Thus this equation




A
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is, effectively, an irrational form of the equation of the general
Cyclide which is obtained by projecting the quartic surface from
the point Q. :

Ex 2 For the case when the quartic swrface is given by a
general quadric, 0, and a line-cone, we may proceed as in Ex. 1.
We may also proceed as follows: Let ¢=0 be the tangent solid of
the quadric {I at the point from which the projection, to the space
of three dimensions, is to be made; this poni we now denote
by U. Let =0 be the polar solid of U in regard to the lipe-
cone; this solid contains the axis of the cone. Let the poinf in
which ¢ = 0 meets the axis of the line-cone he Z, and let 228 e

the polar solid of Z in regard to £2; thus z =0 is undefined when-

t=0 contains the axis of the line-cone. The solid 220 dontains
the point U'; and contains the polar plane, in regard to' Q, of the
axis of the line-cone, We define two other solidsy w=10, y =0,
as follows : Consider the plane « = 0, 5= 0, thisyeets the guadric
Qina U‘il'lic; in this plane take the pole ofsthe line ul-——-z=dt=0,
in regard to this conic, say the pointw ¥ Pei lines drawn
fron 7', conjugate in l'eg;rd {0 thisgonig’r@eg?ﬁ?ﬂﬁlﬁgé’ LRR §
in pairs of paints i involution, Thewline-cone meets the pla.;{e
#=0, 7=0 in two lines intersecting’i ‘the point,in which the axis
of the cone, which les in % = 0, mieets this plane; let this point be
(%o 20, 0, 1, 0). We can then‘ehoose = 0, y =0, vanishing at U,
so that the solids x — myf =0, § — ¥ = 0 contain the axis of the
cone, and meet the plan€w=0, u=0 in two lines harmonic in

regard to the lines ir%:vhiéh the line-cone meets this plane; while,
12

at the same time, 41
bye=0,y=0, ¢ <9, are a self-polar tria
in which this plane meets (2.
With this -‘{#‘dce of coordinates we may suppose
t

of O, and of the line-cove, to be, respectively,
a® +,'3;'7’§—"zﬂ oy =0, o2 (w - wh) Py —yplf - = 0,
hei a, L, r are certain constants. By elimination of & we have
the-equation of the Cyclide,
R S ek i [a? (2~ ad) + 6’@—-%!)“]'
1 in regard to x=0, which Is

Jthree lines, of the plave 5 =0, = 0, given
g in regard to the conic

i

the equatibns

"This represents a surface, symmetrica
the envelope of the sphere

(@ - tacos B) 4 (y — thsin B + 22 =42 [{%y — 2 cos )2+ (% _baindB+1? - nt— %'l
the centre of this sphere is (a cos 8, bsin 8, 0, 1), lying on & certain
conic; and the sphere passes through the points

[wns Yoy 1 (‘f‘? -y ":9'02)%’ 1}‘ 132

Q!
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The surface inverts into itself, in regard to the sphere,
24 40 + 2P — Qg — Lyt — Lkt =0,
whatcver b may be,
If we take A, Ao, A; as the roots of /(\) = 0, where

SO = (@ =N o + (B — M) byt — 2 —
and put, to define &, 8y &, &

b .
a—ad=ay % (a®— N} My A
k=1 A
3 Cl o\ N
¥ yd=%o kzl(f'E — M b w= = Ml

L

together with ¢ = £ 4 £+ £ + £,, we find 2
3 ~&
@ (@ —wtf + 8 (y — gt — = 2 ALK R) &
k=1

4 - www.dbraylibrary.org@in .\\f
Fhd ot — P U= LN ED (20 + y8 - 8
k-1 ~
where 7 (A) denotes the derivative of £()).

Ezx. 3. The equations when the guartic surface, in the fourfold
space, is given by the intersection gf'#wo line-cones may be obtained
as & particular case of Ex. 2. wo of the roots of F(a) =0 will,
in fact, become equal to 2%, #Hiy, =0 and aiw? ="+ #) (a2 = &)
In general, if at, &%, 9%, RO - y® are positive real quantities
(@ > ), the roots of £ (X)="0 are in the intervals of —o0, 0, & ¢\
Suppose the two partiéulér conditions satisfied ; introduce g instead
of r, given by p? =4+, and put ¢* =at— & With C=(u'— e,
4 = (2 — a)}, 41@ Feduction to the general formulation is scen by
putting QO
$OX =apg -*]a@ct —cu, BACT=qex— pelt—pu, BAU=pex+o (B -pf)i—ui,
which\]@d’ to

. :.' (ﬂw — ,U'.Ct)"‘ + bzyz —i = [yz 3+ X2 Aujw],
SO VR = (o — pat) + (u - Brip = 2 [ 4 O =T,
\3ud a quadric Q given by the vanishing of
Py + 2 (B — ) - Y=g+ 7+ X0 4 BT - U2
The quartic surface in fourfold space is thus the intersection of two

line-cones. The Cyclide obtained by projection has thus (p. 193)

four double points; its equation, by elimination of u, is capables
among others, of the forms )

124 5 2 4 (B — p2) ) = 402 [(aw — pct¥ + By,
[Py 42— (B4 p2) ] = g [(cx — waty — 8°5%]
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A particular irrational form (noticed by Kummier, Berlin. Monatsber.
1863), which may be found as in Ex. 1, is

E

Bt + [(ax — pct) + By — [(ca — pat)t — P22 = 0.

The loci of the poles of the tangent primes of the line-cones, with
vespect fo the quadrie, £, are given by U =0,2=0, ¢ 22® + 27 = f7,
and by X = 0, y =0, c=*a* — b7 *28=#. On projection, to the space
{z, %, , t), we thus have two conies, in the planes 2 =0, ¥ =0, so0
related that their common tangent planes touch the Absolute conic
t=0,a"+ 3+ 22 =0. Reciprocally, this is the statement that, ifi),
the fourfold space, the iwo line-cones mect the solid £ =0 in4wo-
quadric cones (given by &2* 4 #y® — w2 = 0, 2 — 8% — * = Q) whose
cotamon curve is on (1, as well as on 2=0. If we d(.ﬁi)tt the
irrational form, noticed, by p+ (gt — (so =0, t}Q'\Absolute
conie is given by p =0, gr —so = 0; the double ppinis are given
byg=r=p*—sv=0and s = v = p* — gr = 0, thatjs'hy
KLAAT ibr- meri

awy— ety = yy = o2 4 b (- %%F:lablary,mg.m

-and e, — paky= 3 =cyy + b Sud) i, =0,

for which c—2a2— 6— g2 =12 a—ia? +)572?}12=512' The Cyclide is
obtainable as the envelope of spheregi ™

(& ~ta cos ) + (y — thsin Oz _
=22 [(#, 3, — & cos O+ Brsin® @ + 472 2],

which have their contres o the conic z = 0, a2a® + b7y = # and
pass_through the fistXpair of double points, It is likewise
obtainable as the engelope of spheres, with centres on the conic
¥=0, 92 — b=z @ passing through the sccond pair of double
points.  Auy sphepe of the former system touches any sphere of
the latter systed? 1t is clear, in fact, in the fourfold space, that,
et & common'point of the two linc-cones defining the surface, the
tangent solid of € is met in the same plane by the tangent solids
of hoth¥he line-cones, Thus, for the Cyelide, taking two spheres
Of,mfhér system, the Cyclide can be gencrated as the envelope of a
sphefe, with centre on a certain conic, which touches two fixed
Sphires; or, again, as the covelope of one of the four systems of
spheres which touch three given spheres,—a simple result of in-
version from a eommon point of the three spheres. Further, the
¢ircles in which the Cyelide is touched by the enveloping spheres
Ogthe twa systers, are easily scen to be lires of curvature (p. 186,
a/ 0\"_3).‘ Dupin’s Cyclide may, indeed, be defined by this pI'U.per-t-y
of hﬂ"lllg two systems of lines: of curvature which are c1rcI§:s.

lso, we notice, any normal of the Cyclide meets the two conics
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(@2t 4+ by~ P=0,2=0), (-2 —£=0, y=0); aund
conversely, This Cyclide is the only surface, in threefold space,
of which the normals meet two curves: if the surface he a wave-
front this is an optical theorem (Maxwell, Papers, 11, p. 144, 18671
In the case of the general Cyclide, we have defined a line, in the
fourfold space (p. 183, above), which, on projection, becomes the
normal; in the present case this is the line whose poiuts, for
varying +, have coordinates A
Yo — pact, (Y — &y, (f—a?)z, (=@t + u, O\
(f — 62— ) u + pe (ax —ubt)y

where (z, 9, z, ¢, 1), arising for Y = ¢, is the foot of the Yormal.

Ex. 4. Prove that the Dupin Cyclide is obtainal)lé by rational- -
ising the equation (Y

' ‘1"1%""1!’2%4"1[’3%:#1 \/

h 1 N h X L atl () =10

i il eghets of thequation C(¥)=0,
Cry =2t + (Y — &)y (¥ — a?)y et =10y
the equation of the Cyclide so obtained} one factor of the complete
result of rationalisation, appears jutthe form
[2%+g7 422+ ¢ (04 @ — pY RSN
=42 [(@cbm B )+ a2 (@24 8 — &)+ ey + 6257,

This result is obtained‘by Maxwell from optical considerations.
It can he shgwn that, if s f{enotc the interval, measured in 1'ega}l‘d
to the guadric surfaee \C'(6) = 0, between two points of a line which
touches the two ¢onfocal quadric surfaces C (p)=0, C(g)= 0, then

Ep—9 _ % [(hu—p)(¥e-g)
N\ =/ w=1d (P, — )T, e
where @40 (6 — ) (0 — ) (§ — p) (6 — g), or, say, ©=F (9,
and .‘?&-‘ F(\fs). When p=1¢2, g= a2, which corresponds to a line
meeting the two focal conies, as 1 Ex. 8, this gives

N
./ 3 .
\ ), exp. (2w) = kl:{1 (6% + 4 2)/(8% —rid)s
;‘;d if, herein, we suppose @ to increase indefinitely, putting

w=p, this will be found to lead to Maxwell’s result quoted.
(CL., also, Darboux, Théorie...des Surfiuces, Livre v, pp. 297, 308:
and a note, Proc. Camb. Phil. Soe., x?:, 1921, p. 129.)

.E.:c. 5'. It was shewn (p- 193) that, in the fourfold space, two
given points of the gencral quadric 0, can be projected into two
other points of O lying on the tangent solid at a given point, O,
of Q. It was seen that the centre of such projection is any point
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(not on 12), of the conical sheet joining O to the conic in which
the polar plane, of the joining line of the two given points, meets
. Such a projection changes a line-cone irto a line-cone; ihus a
quartic surface, in the fourfold space; given by the intersection,
lying on {3, of two quadric line-cones, is changed, by such projec-
tion, into & quartic surface given by two such line-cones, of which,
however, two donble points lie on the tangent solid of & at O.
Suck a quartic smface projects, from O, on to any solid, into a
Tore, or Anchor Ring, When this is proved, it will follow that the ,
Dapin Cyelide can be inverted into a Tore. The necessary centre
of inversion, in the threefold space, is any point of either of twe
circles; vne of these circles is the intersection of the cones\(or
" point-spheres} which join a pair of the double points of the Pupin
Cyclide to the Absolute conic. N

Suppese, in fact, that £} contains the intersection of One quadric
line-cone, whose axis meets  in two points, 4 andB;with another
qua}dric line-cone, whose axis meets 2 in ¢ andhBY Thus CDA4 is,
a plane of the line-cone (CD); it can be Semae?i hat ’Btp% Tt
solid of ) at 4 1s Iikewise)a tangent soliggl@ %ﬁe line%fgne %),
tonching 1t aloug the plane CD4. Thys, the polar plane of the
line AB,in regard to 2, passes thronghithe line CD. Now suppose
that 4 and B are in the tangent solid'of (2 at a point 0, so that
the polar plane of the line 48 iswthe plane OCD. "Then, project-
g from O, one of the two fogal“conies of the resulting Cyclide
degenerates into the line which's the projection of CD. The other
foeal conic, the projection(df the polar reciproesl, in regard to 41,
of the line-cone (CD), hdeomes a circle. For, this requires that the
polar reciprocal of thisine-conc has two points, lying en 0, which
are on the tangent™solid at O; or, that there are two fangent
planes of this [ig¢dne which touch £ and pass through O; by
what has been fajel, thesc are the tangent planes of 0 at 4 and B.
The proof C{m}“then, be completed easily; and it can he shewn,
further, thatthe tangent planes of the Tore, at either of Ehe two
double gohits which Jie on the Absolute conie, coincide. Each of
theseibints is itself a coincidence of two of the four poins of the
Absolnte conic, generally existing (p. 180), at which the tangent
®lakes of the Cyclide are the same. '

If, in the cquations of Ex. 3, we suppose ¢=0(a'=b), the double
pomts of the Cyclide are given by &=z =&+ = 0, and

&y =1y =2, + (0 —~ ayt b, =0,
and the equation of the surface hecomes
[0 4 o 4 28— (= a) & = 4P (2 + )
To obtain such a swface by inversion of the original, we are to
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take the centre of inversion at any point of the circle of intersec-
tion of the cones

[ew — pat} +[ey £ b(c" — phH e} + 2 =0,

which lies in y=0. Similarly, taking the other pair of double
points, a centre of inversion may be taken at any point of the
-circle z =0, (ar — pctP + a*12 + U (ut —a®) 2 = 0.

By taking the inversion from the point cz = (ua +4Ccost)s,

ez = bC sin 6, where € = (u* — ¢}, it is found that the Tore'gh-

P

N\

tained is given by the equation O\
[+ + 4 ROP=mi(E £, O

N

where AN
mt =FAcC2 (bp + aCcos 0)72, 4B = — 4'm20~%, = (@~ 1*) vl
and & is arbitrary. If O

o = beRQuis Bl an + v poa+ bC cos b,
q=pb+ aCcosﬂQ{':.
the actual formulae are AV
B=r—bTp, m=z_ W50 sin 8, n=p%,
E=p*(zicosO+zsind)+af, L=pasind-zcosd)+oinly™ sinf,

'The double points of the~Fbre are given by (0,0, £ iR, 1) and
(1, + 1,0,0), . )

The inversion of a~Dupin Cyclide into a Tore is given hy
Darhoux {Suwr um\@a.ése remarquable de courbes et de supfaces
algélriques, Paris, 1873, p. 242), with refercnce to Mannheim
(Nowe. Ann. de’\Math., 1860, p. 7). Darboux opcrates in three-
fold spacc, @ith’spheres, saying (loc, ¢it., p. 164): Comme on w'¢
pas despate i quatre dimensions, les méthodes de projection ne
sc%ﬁ)m d la géoméirie de lespace.

Egn8.” The locus of the pole, for inversion, transforming any
twospheres into spheres which are equal, consists of two spheres
conxial with the first, with centres at their centres of similitude.
VFhe locus of the pole, for inversion, transforming three spheres,
with directed radii, iuto three spheres of equal and fike radii, 1s the
circle common to the two point-spheres whose ccntres are the in-
terscctlol}s_ of the orthogonal circle and axis of similitude of the
three original spheres (Darboux, loc, cit., pp. 248, 244). With
different signs for the three original radii, different axcs of simili-
tude arise, ” ’

Ez. 7. Determine the character of the curve of intersection of

the enveloping cones, to a quadric in fourfold space, drawn from
three arbitrary points.

o
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Prove that, in threefold space, the envelope of a sphere touching
three given spheres, §, =0, §,=0, §=0, is :
(RS + (S + S )E =0,
where, for example, uy =0 is the condition of contact of the two
latter spheres. .
£z 8. With the notation of Ex. 3, putting p* for (X*+ ¥+ 2%,
the equations
aCe=p* (ubX ~cAZy P4 pelCt, aCa=p*(cAX +pdZ)P~bACE N
with y = p*¥#, transform the Dupin Cyclide into the come, of
revojution A\
(X —Let/COP+ Y =242 (4 — Sut/CAY. N\
_ Ez. 9. The Dupin Cyclide may be regarded as the envelope of
its tangent planes, and its equation expressed tangentially. 1t we
express tangentially one of the enveloping spheres; Whose centre is
on a focal conie, the cquation of a tangent<plane being written
2E+yn+ 28+ ér=0, and find the envelbp whidibphereong ifts
centre moves, we find, for the two focal conies, the equations
(88 = co)f + b = (7 + i) = 0, (cEmb) — B — (v + ) =,
where o = £24 2 . £ The enveloping spheres, whose centres are
at the points of the focal conics which lie on =0, give four double
tangent plancs (or tropes), whose' equations are  ~
e — pat + px =0, aw - pet t iy =0,
In the fourfold space, we wiay consider the aggregate of the tangent
planes of the quark'%d\surfam of intersection of the two quadric
line-cones: Considering an arbitrary tangent solid of each of these
line-cones, with-fhe plane along which it touches the line-cone,
these two planés’have a common point; the intersection of the
tal?gent solide™s the tangent plane of the quartic surface at this
point. After projection, this becomes the statement that any
ﬂl\'elop%’ sphere, of one of the two systems, touches any sphere
of thé wther system. The tangent solids, of the two line-cones,
Tespeetively given by
4 N - - : P p—
< ’(M—pcﬂ)cosé'—{-bysin &= u=0, {ca:—-;uui)cos¢>—"535m¢"(u_b”TO’
meet in a plane lying on the solid #f +yy + 20 +7=0, where
E=acosf—ccosgp, n=hsing, {=ibsing, 7= u{ocosf—acos )~
which, with w!= £ .42+ ¢, lead fo w=¢cos §—acos . These
sat?s,ff the two eguations iven above. There are two ti‘ngizf
solids of cither line-come which pass thﬂt);ugll; the centre of p
Jection; these give the four double tangent pianes. ]
Dua]][:,r3 in th{f: fourfold space, we may consider the surface. In the
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solid ¢ = 0, which is the Iocus of the intersection of this solid with
the line joining the two points

(acosd, bsin 6,0, 1, pe cos 8 — 2+ 87,
(ccos ¢, 0, —ibsin ¢, 1, pa cos ¢ — %)%

these are poin"cs of those conies which are the polar reciprocals of
the line-cones, in regard to the quadric

Pyt (P - 2Un =0, Q)
_This is the line whick, on projection, becomes the normal,ef the
Cyeclide 5 it meets t = 0 in the point (£,4.£,0,—7). (M

Ex. 10. Prove that the Dupin Cyelide is the proj celion “of a
quartic surface, in the fourfold space, for which tleicoordinates
(s y, 2, ¥, ») of & point are, respectively, the five )

. " N\
ach? + p{dfacos ¢ — C*ccos @), — A*Ch sin.@‘,}\ 1AC s
- plr 4 A‘*‘];: cos 8 — C*q cos ¢, A?b"\(q ¢z & — ph
where 2 = [ AP EPLBTATY QIR 0 0

The first four of these give the cobtdinates of a point of the
~ Cyclide. The equations of the suffake arc obtainable by elimi-
nating 4 and ¢. N
Prove, also, that the tangentwplanes of the Cyclide, at any point,
{ay oy %, 0), of its double g@nfc', are expressed by
(@2 + 35 2 zzu)‘ —B(@Faf Py =0;
further, that the Cyclidesis touched, in two points, by every tangent
plane of the cone ¢4 ™
(s det) + (4~ )+ (4 08) 2= 0,
the curve ofi¢anitact, as this plane varies, lying on a spherc. Also,
that the fangential equation of the Cyclide is capable of the form
[{i\f“ (= Y g b (0 — @) 2 Rac ET + M)
\ — 4 THE+ 7+ ) =0,
_where M = (@ — a) (2 — ), T =(ack+ pr)/M. Determine all
~(the ]‘“E’S lying upon the Dupin Cydlide. (Four in nwnber, Cf. Loria,
N/ Mem. Torino, xxxv1, 1885, p. 206.)
di Eax. 11. Scgre's surface T' is a prime section of the locns of thrce
lmensions m space of five dimensions which is obtained by cubic

- surfaces in ordinary space passing through a quintic eurve of
genus 2 (p. 235 below), psing ® !



CHAPTER VI1I

RELATIONS IN SPACE OF FIVE DIMENSIONS,
KUMMER'S SURFACE

Klein’s figure in three dimensions, related to o figure id
five dimensions. We have studied in some detail, in Chap. v*a
figure, in space of four dimensions, containing fifteen Jines meeting,’
in threes, i fifteen points; for convenience we may deseribe this
kere as Scgre’s figure (of. Stéphanos, Compt. Rend., g, 1881,
p- 6345 quoted by Segre). We shiill shew now thai these fifteen
lines are in correspondence with the joining lines of\siX points in
space of five dimensions. The transformatiom ubilises formulae
arising in the representation of the points,, { B8 ¢
lines, in space of'?hree dimensions, bypuse of Sﬁ%’e of five dimen3tént?
for clearness suke we hegin by referring again to this representation,

Let {,m,n, I, w,n’ be the coordinates of*a line, in space of three
dimensions, and put z=1~0, y=gh~m, x=n— w, u= Z-f' '
v=m+m', w=n+n. We have séén (p. 46, above) that the lines
through a point, (£, 7, 7), of thethrecfold space, are represented,
in the fivefold space in which™(&, 3, % v, v, w) are coordinates, by
the points of a planc whose tliree equations are {u, v, w)=D (2, , %),
where D, written in explielt form, consists of the elements, of the
matrix 3 given by G~

M=iypi—gip, 28—t , 2+

( 2(onfln) | b 20E=ED)
REE~yr) , R+ E) , PO 0-T

each elemé@t}iivi ded by F4of + L2 47 For brevity, the elements
of the re%s'of the matrix M will be denoted, respectively, by &,m,ms
laymos sy Iy, my, ny, and €2+ 1P + ¢+ 7t by 0. Inthe threefold space,
the éguations 2= 0, u=0, ... denote six }inear complexes, of w}gch
Tyely two are conjugate ; in the fivefold space these equa,tlonst(_ie ue
& Rerad, scif-polar in regard to the quadric, {2, whose equa o
Wb ot bt gi g gp 45, The plane, in the fivefold space, plane,
seuting the lines through a point of the threefold Spage,]ls ap ?nfi
- of ene system, lying on the quadric {2 and there are p anes ;-) the
of a second system, each representing the ]_mes of a plane © e
threefold space. Kor each two of the six linear comPlex‘f’ miines
associated polar systems, of the threefold space, there ‘l":: wo oint
which are polars 6f ene another for both systems .If Pbe any p

qi%oglylexes of .

QY
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of the threefold space, and, on the transversal drawn from P o
these two common polar lines, P be the point which is the harmonic
conjugate of P, in regard to the Fola.r lines, then P is the pole, in
either focal system, of the polar plane of P in the other foeal system
{cf. ¥ol. L, p. 65). In the representation in space of five dimensions,
to a point and its polar plane, in regard to the focal svstem for
which the associated linear complex is % = 0, there correspond two
planes of the quadrie €, which meet in a line of the fourfold =@\
these are harmonic inverses of one another, in regard to the fourfold
w=0 and its pole in regard to & (p. 42, above). Thus, the vepre-
sentation, in the fivefold space, of the two points P, P, spoken of,
is by two planes of Q of the same system, either obtainable from
the other by the succession of two such harmonic invegsions. When
we have six linear complexes of which every twd are conjugate,
there will be fifieen such involutory transformatious as that from
P to P’; by these, every point of the threefoldhipace gives rise to
fifteen othefa’.W\Linidz?mergp{daime sin’ui}a’t\b* gives rise to fifteen
other planes. In the fivefold space there.orfespond scts of sixteen
planes of {2, of the same system, arisibgvrom one of these planes;
the linear complexes being # = 0, =90, ..., as above, any point of
one of the fifteen derived planes is\ybtainable, from a pont of the
primary plane, by change of th&3ign of two of the coordinates of
the poiut; thus, also, any one'f the sixteen planes can be vegarded
as primary. In the threefold space, there is a figurc of sixteen
points and sixteen plane$, arising by taking an arbitrary point and
the fifteen derived p i.Q‘ts,’ and then the polar planes of all the points
in regard to all thg%« eonjugate focal systems, Only sixteen planes
arise in this way§ each plane contains six of the points, the poles
of this plane jtidhe various polar systems ; and through each point
there pass g wix polar plancs. The thirty-two planes of the gnadric
0, in thefivefold space, which correspoud to this figure, are all
derlvaj{ from one plfane of {2, by combination of thc six processes
of b?}rmonic inversion, in which one of the points of the funda-
mental hexad, and its polar plane in regard to Q, ave f undamental.
Further, the six lines in which an arbitrary planc of £} meets the
primary fourfolds, » =0, » =0, ..., tonch a conic of this plane. For
in the notation above suggested, these six lines are given, respec-
tively, by N

=0, y=0, 2=0, Lo+ my+nz=0, ..., Lo+my+nz=0;
and they touch the conic in which the plane is met by the cone

_ (311233.1?)§ + (mlmgmsy)% + (??lng?as,z‘;')% =0,
This conic equally lies on the cone

(hmyny @t)% + (Lrgn, zr)§ + {Lmymy w)"i =10.
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The fact, in the threefold space, which corresponds to this is that,
in the figure of sixteen points and planes, the six poles in any plane
lie on a conic, and the six planes through any point touch a quadric
cone.
Er. 1. 'The reverse of the formulac given above, for passing from
any point, (£,5, £, ) of the threefold space, to a plane,
{10y vy wy=D (@, y. =),

of R, are, if p, g, », p', ¢, 7', respectively, denote

Mgy, 20, AL h4my, B — 2y, w — Eg—m,, :
. . . A\
which do not contain 7, m., n,, these following : \ N

=gl =viys Ty =i =pis T E=p/ g = 9[3’ ‘0\'
[8=pp, =qf, =r, ni=a, I*=p, m?=y, then ,\
Pl 0+t g=(B+0)+ 8L, r=(y ;B4
Ez. 2. Tn the threefold space, the polar lan% N\
AT ibr S i
EX_!_?}Y_{_EZ_’_TT: {‘;‘S T-aull Lary,mg.ln
of the point (£, %, & +), in regard to the qudric surface
X1+ ¥4 224 T8 20,
utmtaips the three poinls (v, — &, 7, —~f}, & —E-n),(—n&7,-8),
of wh]ch every two arc conjugatelto one another in regard to the
quadric surface. When the coprdinates of the first of these three
boints are put for £, #, ¢, 1-,{11 the matrix M, above, the matrix is
un&lt‘ﬂ_‘Cds save for a (.-haugg of sign of every element in the second
and third vows of the matrx. Thus, the plane, in the fivefold space,
representing this poigty (1, — &, 5, — £), 1s obtained, from the plane
Tepresenting the pemt (£, », £, 7), by two harmonic inversions in
Succession, in thé fourfolds =0, w =0, each associated with its
pole in regard %070}, Similarly, the second and third, of the three
pt){nts_ nanfed, correspond, respectively, to the pairs of harmonic
bversiong{{be, u) and (u, ). The same plane, X + ...+ 7T=0,
c°’“§‘¥‘$;a]so the three points (7, & —u, — &), (—& 7 & —9h
) T, — {); these are, similarly, a sclf-polar triad in regard to
:ke a]‘}‘c‘\dl‘lc_: surface X2 4 .., +T* =0, and correspond, 1'&spective!y,
o(f" fp&lrs of harmenic inversions, in the fivefold space, in the pairs
I;‘}ul"folﬁs (o %), (2,0, (2, ).
we take new coordinates (X, Y, 2, T, given by
(X’Y})er”’): T s _gs i '_'E (X, Y$Z’T)’
g 4 Ty = Es -7
T f sy T "'g
E, 7, &, 7
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the coerdinates, (X', ¥, Z"), of the six points of the plane " =0,
are (1,0,0), (0,1,0), (0,0,1), (4,4, &), (my, may m1), (s 10, my),
respectively. These points lie on the conie
' Limyn [ X' + Lomyn |V + Lmyn, [ Z7= 0,
of which the general point is given by

X'=lmmn8, Y=UbLmmn, (1-8), Z'=Lmn,0(6-1),
namely, for the respective values =1, 0, o, —ur, — v\, =N\
where d =1,/i;, p=mgfm;, v =n,/n,. The six points are also given
by I, jH, kH, Hi, Hj, Hk, where H = i€ 4 jy + k{4 7, the gvmbols
i, §, k being sulh that #*=—1, jk=—kj =3, ete. {Vol. n(p* 138,

Eyx. 3. Shew that the fifteen poiuts, in the threeﬂ)l@.&ﬁmc, ean
be construeted from the six points i, jII, kH, illi, iy LHE, the
notation being as in Ex, 2. These are the six poiuts &, B,C, P, ¢, R
of Fx. 5,p. 139, above. Determine the coordinates ot all the points
relatively to the four iH, jH, kH, H. \

Lp. 4. Tt dbefoldbspayegrgtinhe po}esﬁn regard to [, of the
six primary fourfolds, # =0, ..., w=10, badivided intc three pairs.
The joins of the points of a pair meefihe quadric ) in two points,
which represent the pair of comman'polar lines of the two corre-
sponding polar systems of the thigefold space. It can be shewn
that the three pairs of polarJines so obtained are the pairs of
opposite joins of four pointgef the threefold space: for instance,
the tangent fourfolds of L2 at the two points (1,0,0; £1,0,0)
contain the other two paits of points similarly arising.

Ez. 5. The fnmm{t:: Jsuggest the consideration, in the threcfold
space, of ten quad‘rih. rfaces. One of these is expressed by

O E+n++ =0,
the other nifte“are obtained by equating to zero the respective
elt_ements,\ll,\f.rle, 7y, ete., of the watrix M. "These quadric surfaces
arise ge{ip‘étrically because the polar plane of a point, P, in regard
to angone of these quadries, is obtained by first passing from P to
a point, P', by means of one of the fifteen involutory transforma-

Hous explained above, as arising from a pair of the focal systems,

afid then taking the polar plane of P’ in a third focal systemn, 01
beeause the generators, of either systemn, of any one of these quadric
surfaces, consist of the lincs common to three of the six fundamental
linear complexes, the other system of generators being the lines
common to the other three complexes. "This is clear, either, directly,
from the equations of the quadric surfaces, or, from the representa-
tion of a point of the threefold space by a plane of £ in the # vefold
space. For instance, from the three cquations of such a plane
ot =hLay+my + nz ete,
any poini of the quadric e, =0, or £y — &r =0, com-cspmids to a
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plane of & which contains a point for which =0, #=0, z=0.
These last threc equations, however, represcnt a plane, in the five-
fold space, which mects Q in a conie, The points of the conic thus.
represent one system of generators of the quadric m, =0. We shall
associate the verlices @, #, 2, #, v, w of the fundamental hexad in
the fivefold space, that 1s, the points for which these coordinates
have, respectively, ihe values (1,0,0;0,0,0),...,(0,0,0; 0,0, 1),
with the respective numbers 4, 5, 6, 1, 2, 3. Then, for instance, the
plane « =2 = x =0, containing the points y, v, w, is associated with
the triad 235. "T'his plane contains the points of £ lying on the
joins, of paivs of points of the hexad, given by 48, 25, 35; And)
these points represent three pairs of generators, of the guadric
surface m, = 0, each of which 1s a pair of common polardinds for
a pair of the six polar systems. The other system of gefietators, of
the quadric surface m, = 0, is represented by the conigof  which
is the polar of the former, lying in the plane yppe=1w=10; this
conic, or the plane in which 3t lies, is then associgted with the iriad
164, The quadrie surface may then be rephdsén Hassr 6io184n
and this notation suggests six pairs of gegerators helonging to the
quadric surface. The ten )
quadries corresponding to | 234(156) 255 (164), 236 (145)
the elements of the matrix | 314(258); 815(264), 316 (e46) -
M, and to o =0, will then, | 124(356), 123 (364), 126(3465)
respectively, have the nota- | 87 .
tion of the annexed scheme, A4 L,
as is easily seen in the same'way. Now, it is clear that, in the five-
fold space, there can %6, @fawn, through the line joining any two
of the six fundaehtal® points, four planes, each contamng one
other of thesc sizspoints (and, thus, the lines joining this to the
two first points)\There are, therefore, fifteen sets, each of four of
the ten quadmi@gwiirfaces in the threefold space, such that these four
quadrics hate)two generators in common. Any one of these sets of
four ¢ uqdf& surfaces consists of those whose symbols, in the annexed
schema it in the same row and column with any one, other than
[1234458), of the sixteen elements of the scheme. For instance, the
quidtic surfaces so obtainable from the fourth clement of the first
ro¥ all contain the two generators represented by 28; t‘hat_ 18 .the
generators given by the intersections, with (3, of the line joining
the points v, w, in the figure in fivefold space.
We may, thus, from the given scheme, obtain another scheme;'
of four vows and columns, with no entry for the fourth element o
the fourth row, by putting, in any place, the S}fq:b_o] for t}lle two
generators common to the four quadric surfaces arising, it the way
explained, by starting from this place. This new scheme agrees
I notation with one given earlier (p- 183, above).

123 (.456) [
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It may be proved that the two generators common to a set of
four quadric surfaces are polar lines, each of the other, in regard to
cach of the six remaining quadric surfaces, Also, the squares of
the quadratic functions which, equated to zero, give such a set of
four quadric surfaces, are connected by a linear equation. We may
also remark that any quadric surface, whatever, may he expressed
as a linear function of the ten guadrie surfaces; and that every
two of these ten are both outpolar and inpelar to cne anofher
(cf. Vol. 1, p. 149). N

The six linear complexes, conjugate in pairs, were studicd byF./Klein,
Mauth, Annol, 11, (1870), p. 198, who remarks the sets of four quadhie surfaces
having two common generators (Ges. Math, Abkandl. 1. (19243 1" 63). Sec

A transformation of Segre’s figure, in space of four
dimensions, to a figure in five dimensiqns. The represen-
tation, in space of five dimensions, of theNfigurc of six linear
complexes il "4 hpERfdIHrapacashias suggeﬁted a notation for the
fiftcen pairs of common polar lines, of. %w6 complexes, for the ten
quadrie surfaces, and for the fifteen 3&ts'of six joins of a tetrad of
points {each associated with such avdymbol as 12. 34, 36). This
notation agrees with that previcusly emploved (p. 114, above) for
the fifteen lines, for the tenSsingular solids, and for the fifteen
points, arising in Segre’s igure. As we saw, the figure of six
linear complexcs arises 4n any tangent solid of the locus =, dis-
cussed in connexion with Scgre’s figure. We now describe an
independent trangfemmation, which, though analogous, is different
in essence from dhaghove.

We consider{ dny threefold space, with coordinates & = § T
"Therein, aswe have scen, we ean associate, with any point (£,9,57)
fifteen o’ghgrs’; the coordinates of these are derivable from & 7,5, 7
by two~processes: (1), the change of the signs of two of the
coordinates ; (2), the mterchange of two of the coordinates aceon-
panted by the interchange of the other two. These processes may

besdpplied to the coordinates of any one of the aggregate of sixteen

w

“points, and will give the coordinates of the other fiftcen, and

only these. We thus have a linear group in four (homogeneous)
variables. And we have sets of sixteen points of which cach set 18
determined by any one of its points; or, as we may say, we hate
an involution of sets of sixicen points in the threefold space. We
now shew that we can determine a sct of five {functions, all homo-
geneous polynomials of the same dimension in £, », &, 7, with the
two properties; (1), that the ratios of these polynomials arc the
same for all the points of a set of the involution; (2), that these
ratios are the same only for sixtcen points belonging to the same
set. of the involution. Then we regard these five functions 85
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homogeneous coordinates in a space of four dimensions. Thereby
we obtain a correspondence, which is uniquely reversible, between
points of this fourfold space, and the seis of the involution in the
threefold space. But, the ratios of the five functions, being de-
pendent tpou the three ratios of &, n, £, 7, will be connected by an
algebraic relation, which may be taken in a rational form, The
correspondence will thus be one between the poiuts of an @3 jocus,
in the faurfold space, and the unrestricted sets of the involution in
the threefold space, For the five functions in question we takes
the squares of five elements of the matrix M, above (p. 208)}
. namely, recalling the notation used hefore, [ =+* 4+ B — 92 < 7,
= {nl— 7E), ete., we take the five functions 4%, m? n? st

These are easily seen to be unaltered, in their ratios, by passing
from any point to any other point of the same set of the invo-

lution. The same would not be trne of the unsquaréd functions,

b, my, cle.; for instance the ratio 4/m, is changed\in sign by the
substitution which replaces & #, §, T, respectivély, by =, §, 9, &

As the ratios of the five chosen functiongvase dhaticnid-dnypassing

from one point to another of the same setiit follows that when

these ratios arc given, the ratios of &Yy §, 7 are capable of at

least the sixteen values which correspond to the points of such a

set of the involution. If we shew.,hfgebr&icaﬂy that the ratios of

£ m, ¢, 7 ave capable of only sisteen values, it will follow that

these ave those of a set of thespvolution. Thence will follow the

second, characteristic, property of the ratios of the five chosen

functions: namely, that they are unaltered only for the points of

such a set. Now, the éxpressions of the ratios of & 5 & = In
terms of the five squazes L2, mg, g, ng, my, are to be found from
the equations, prefipusly remarked (p. 205),

T = (W) (L~ m), =L+ ) (s = 7o)y
9.\ f"lgz(ms+%)/(ﬂ1— A

by patti o beside my = (mH)3, ny = (n¥, -
¢ .\'ﬁu:"= (= 1t m b mY, b= (= B+ md Dy ;
N\ L= (= I+ m2 + ndh, my = (— 2+ ngt + 7
o rat! 2, or
the vatios £, 71y 71¢ may thus appesr io be capable of 2%,
thicty-two, values, when the ratios of the five squareshare r%j;:::t
But ‘the signs are, in fact, not independent ; fﬁrﬂf ?oxl')m
Ry . ml, . fym, is expressible by the five squares, I ¢
z
Qmn (i + ) + (me + n?) (mng + Mg’ — b'e)s

i ily verified.
Yot easlo%l the five functions -

id

B A T K, |
The representative character of the raiivs

B.G.IV.
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is thus established. To obtain the relation connecting them we
introduce the precise notation

X=(T2 _’_n%__ Ez_Ea)z_’ X’ =(72 + g-z_ Es_,qey«:,
Y =4(nt—-Ep, Y =4+ 8,
Zem (B4 P = B == (P B+ TP
then it ean be verified at once that
X1 X' + Y4V +Z+2Z=0, and (XX) + (YY) H(ZZ ) =0

The latter is the equation which may be written fo =y — mag!
it represents the  * locus, in the space of four dimensions, of &whieh
the points are in reversible correspondence with the seth bt the
involution in the threefold space. By eliminatiou of ¢ between
these two equations, we have the relation connecling tha five chosen
functions X, X", ¥, ¥’, Z only. S

We may express the matter by speaking of the invagienis of u linear group,

of finite order, i r raviables. e reader may cousult
Burnside, The%w&;%mﬁ%}ém%m er (2ndd Bdit., Cmnhridgye, 19113,
p. 359, where, however, the variables are ndt homogeneous, Also, the
present writer's Multiply-Periodic Functiony XGwinbridge, 1907}, p. 281, In
this, in line 5, the second & should be 473 and} in line 22, the words “there
being” should read ‘“there not being.” o

'The locus cxpressed by thesgafeqliations is none other than the
loens 3, previously discussed (pp 126, 159, above). If we put

U=Y+Z+X,V=24+X+Y',
W=XaX+Z, T=-(X+Y +Z)

these corresponding,aespectively, to the squares m?, n? — 47 — LY
this locus has fifteen double lines, in each of which there vanish
four of the tenChunctions X, V, Z, X, Y, Z, U, V, W, T. The
fifteen sets offour of these are those in the same
row and golamn with the elements, respectively, | z,U,¥V
other thanZ’, of the adjoined scheme. On com- | W, &, ¥
pan?.qn\vith a scheme previously given (p. 183, ' 7, 1", X" -
abf\wg'), we thus have a notation, b ¥ two numbers, . z
~forjeach of the fiftcen lines; and also & notation,
by three numbers, for each of the ten solids expressed by the
equations X =0, ..., T=0.

In general, as has heen said, to a point of the locus Z, now
found, there corresponds a sct of sixteen points of the threefold
space (£, 9, §, 7). But the fifteen lines of X are excepiional. Fach
of thesc corresponds to the points common to four quadric surfaces,
of which three are linearly independent; but these four are,in cach
case, such that they have two lines in common. Thus cach of the
fifteen lines of the fourfold space corresponds to ¢mwe lines of the
threefold space, However, as we have seen above (p. 207), when we

£
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represent the lines of the threefold space (£, %, §, 7) by the fmints of a
quadric 0, in fivefold space, the representation of the two lines, com-
mon to one of the sets of four quadric surfaces, is by two particular

oints of 13 namely, the two intersections of 2 with the join of two
of the points of the fundamental hexad, self-polar in regard to (2.
Thus, hy passing, through the threefold space, from the four-

- fold space to the space of five dimensions, every one of the fifteen
lines of the Segre figure corresponds to the join of two of the six
fundamental points of the fivefold space. Q.

But there is more. The fifteen lines of the Segre figure contain
six sets each of five associated lines, (each line heing used fwide),
{p- 114, above). Such a set is that whose notation is i1, 2,48, 14,
15, 16 {with omission of éi). Wherefore, by the number, rotation
we have used for the points of the hexad, in fivefold.gpace, we see
that a set of five associated lines, of Segre’s figure] 38 represented
by the joins of one point of the hesad to the dather five points.
All the associated sets are thus accounted for, \\* '

Relation of the transformation to tRE fiSry b Rmemer’s
surface. We may also apply the transfotmation by which we
have passed from the locus 3, in the jpaee (X, ¥, Z, X', ¥, Z%),
to the space (&, n, £, 1), to another locus. We saw that the locus
2 intersects any one of its tangeptiSolids in a Kammer's quartic
surface (p. 188: above), having.&pdouble peint at the point of
contact of the tangent solid,and also a double point at each of
the fiffeen points where the tangent solid is met by the double
lines of ¥, The equatipri\of the tangent solid involves the coordi-
nates X, ¥, ... lincarlyjand, in the transformation, each of these
is a quartie functipan\of the coordinates £ %, & 7. Thus the

Kummer's surfage{cdorresponds fo a quartic surface in the space

(& n & 7). Upaﬁ this quartic surface _’t.here is an mvolutu_m of

sets of sixtegn points, each set corresponding to one of the ordinary

points of thé-Kummer surface in the tangent solid of % As for
the douhle”points of the Kummer surface, fifteen of them give

rise cach to two ordinary peints of the new Suljface; for we have
seenvthat each of the double lines of S, gives rise to two lines of
= shewn at once, the remaining

(the-space . 7). Bat, as will b
drfub%)e poi(r%, 'g,f i.he) Kumr;er surface, the point of contact of the
tangent solid with 3, gives rise to sixteen poinis of the new quartic
surface, each of which is a double point. In fact, the new surface is
also 4 Kummer surface. 'This will appear naturally below (p. 215),

from another point of view. And, this beingg s;), i_nt?iistintf con;
; 1ot th , £, 7) with the tangen
sequences arjse by identifying the space (f:]l?i e remarked that the

solid of 5. For clearness, however, it shi T
lids in the Segre figure pass
and that four of the ten

14—2

two facts, that four of the si_ngula:r 80
through any one of the fifteen lines,



212 : Chapter Vi1

fundamental quadric surfaces, suitably chosen, in the threefold
space, have two generators in common, are geometrically distinet.
This may be obseured by the adoption of the same number notation
for the singular solids and for the quadric surfaces, convenient as
this is. If we identify the threefold space (& #, § 7) with a
particular tangent solid of the locus 3, the fifteen sets of six lines,
such as 12. 94, 56, which are the joins of four points of the space
(%, , & 7), will be lines which we have not considered in oum
discussion of Segre’s figure in Chapter v.

To see that the point of contact of the tangent solid with = gives'yise
to double points of the surface in the space (£, 7, {, r), ander the trans-
formation discussed, suppose, more generally, that ¢, ¢, ¢, d . are five
polynomials, of the same order, in £, 4, {, v, Which, as regagheir ratios,
are invariants of a growp of substitutions for these (homogdurots) varjahles
£ n, £, v; put, respectively, X, Y, Z T, U for these galvhomials. There
will exist a rationa} homogenecus equation F (X, X347, £ )=0, which iz
an identity in &, 7, ¢, = This equation represents\alocus in the fourfold
space (X, ¥, ZyFwidbodibirhrthetangent solid.(miny poiut may be repre-

sented by - ¢

: X @FOX)o+ ...+ U GEAT=0.
The iniersection of this solid with the loclis’cf)rreapunds to a surface, in the
space (&, ; {, r), whose equation is obiained from this by putting ¢, $a, --.s &
respectively, for X, ¥, ..., U. Theleonditiens for this surface o have a
double point at one of the points, sagu(£,, ms, {o» 7o), Which correspond to the
point of contact of the tangent splid, with the locus #=0, are ot the form

(@FRX ) (Opyfafdot -+ BF/OU ), (50/0)0=0;

wherein for £ are to be putih turn, £, 7, {, . These four eonditions arise,
however, by differentiating the identity in £, », {, 7, expressed by F=0, and
then putting &, 9, ety for &, 7, ete.

Kummer’s guartic surface as the locus of gingular points
of a quadratic complex of lines. A quadratic complex of
lines, -in threefold space, is an aggregate (2 °), represcuted by &
single quadratic relation connecting the line coordinates. The
lines Qf\such a complex which pass through an arbitrary point are
the genlerators of a quadric cone; those which lie in an arbitrary
plane are the tangents of a conic (Vol. ur, p. 99). But the quadric

Z™eone of lines through a point may break up, for suitable positions
‘of the point, into two planes, the lines through the pomnt then
forming two flat pencils in these plancs. The points, called singular
points of the complez, for which this is so, are the points of &
Kummer quartic surface, It was from this point of view that
the surface was discussed by Kummer (Berlin. Monatsber., 1864,
pp- 246, 495, 1865, p. 288 ; Berlin. dbhandl., 1866, p. 1). Similarly,
there 18 a4 quartic envelope of planes, wherein the rays of the
quadratic complex consiitute two flat pencils; but it will appear
that this consists of the tangent planes of the former surface. For
special forms.of the quadratic complex, the locus of singular points
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may degenerate; for instance, in the case of ihe tetrahedral com-
plex, the locus breaks up into the four fundamental planes, and
the envelope into the four fundamental points. Properties arising
in the special cases may, however, sugoest more general theorems.
For instance, we know (Vol I, p. 30} that any line meets four
planes in a range which is related to that of the four planes joining
the line to the four points of intersection of threes of the planes;
it will be found that any line meets the general Kummer surface
in a range of four points velated to that of the four tangent planes. {\
which pass through the line. (Cf. p. 228.} o .
We suppose the quadratic complex to he represented by 'a’y
quadratic relation connecting the coordinates of a point in{Hye-
- fold space ; that is, by the iersection of an (o0 %) quadric®f this
space with Che fundamental quadric, £, which repyesents the
necessary relation conpecting the line coordinates, {Further, we
suppose the quadratic complex to be so general \that the two
quadrics can be represenied by squares of I’té E~53!, me six linear
functions of the coordinates. For the fundd Pratydvie, e,
and for that, (', giving the quadratic complex, we may then
suppose the equations to be, respectivelys )" '
et T 0, krz'li:i’z‘!‘:-z-%‘zg TR % =0. .
The lines of the quadratic comples which pass through an arbi-
trary point of the threcfold spase, are represcn?ed, in the ﬁvefol'd
space, by the conic in whiehwa certain plane, lying on the quadrgc
Q, meets the quadrie (. Similarly, the lines of the quadratic
complex which lie in au asbitrasy plane, are represented by points,
of a conic on £, 1‘;ip§l\l g plane entirely on 0, this_plane being
of the opposite systen to the former. With a very slight change
from the notatiof/used immediately above (p- 208), we may, 28
before, (p. 4y above) represent a plane lying entirely on {} by

three equations

ii-‘*::?lgf;;iﬁflmg-i-nl%, dy= 1@+ My + P Ts = s$1+:f'.1sx‘z4jﬂs-'”sa
whereS¢ + mp® 4+ mg = 1, ete. The difference of motation * ‘B
nzat;;}-ié]: in elqmiratijons in which &, 7, ete. enter hon;oger;eously.
“Then, the conic in which this plane mects the quacrie  omes
sponds to the equation

kali+ kel vleed — k(o tmdst gty —es(latts Byt Tas).

"‘ks(ls-z'l;l'ms-'fz'i'“sﬁ's)z-'-'o-

The left side of this breaks up into two linear factors Pro\rlded

Ty Ty, @ can be found o satisfy the three equations
— k1$1 + k431 p + kﬁzg q + ksgs re= 0’
gy + Rgmp 4 g kst = 05
A ,1.;4'11,1 P+ Egag T kgny r=0,
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where p, ¢, 7 denote, respectively, the three linear forms
Lay, + myay, -+ o, ete.
In virtue of the three such identities as &, =lLp + Ly + L7, which
follow from the detinition of p, ¢, 7, these three equations are the
same as
- (14)1, p+(15)k g +(16) r=0,
(24) m,p +(25) maq + (26) myr =0,
B p+(35)n, g+ (36)myr =0, .
where (rs) is put for k, — k,. The condition for the consistenge of
the three equations is, therefore, QO

N\

A4)4, @ m, B, |=0. N

(15)4,, (25)m, (35)n,
(16)4,, (26)m,;. (36)n, |
In evalmting,@h}f?ﬂ%ﬂ}t‘bﬁ%‘}bﬁg igf!ﬂote theyproduct (743 (s5)(#06),

where #, s, { are the numbers 1, in smhe order, simply by rsé.
The expansion is, then, first, ,\
123.'31'%1:,3 — 182 L myn, + 312, L,moas —918. Lmn,
' ' ;.’:; + 231 . Lmyn, — 921 Lm,n;
herein we substitute, from thaé:i);r'opel'ties of the orthogonal deter-
minant (4 myish, 2\
Lygn, = my (40, 4 Eﬁi"l; by vy = n, {1 my — ey,

Ry By = 1y (Gt + eng), Limyn, = mty (Lny — ey
where ¢ is + 1 ac,c:}dmg as the determinant (Z,m,n;) is £ 1. "Then
the expansion is\.)

(123 — 213821 Limon, + (- 182 + 812 + 281) Lmyn,s
R, + (312.m2 + 218.7, + 281 .7 + 821,
Whgre\ih'the coeflicients of 7 m,n, and [ myn, are easily verified ‘to he
equaly but of opposite sign. Thus, with the omission of a common
= Aactor ¢, after replacing m,n, — myn, by €, the whole s
7 82Lma+ 218,00 + 28172 + 812.m2 + (128 — 213 — 821) 4%

Now consider the coefficients 321, 213, etc., occurring here. Each
15 a product of three differences of the quantities &, &2, - Kgs
and all these enter once into each coefficient. "I'hus, the ratios of
these coefficients are unaltered if we replace %, Az, ---s Ks €ach by
the samc arbitrary Yinear function of itsgl)f, say &, by

(pk, + q)/(mh, +n).

In particular, we may replace k,, &y, k,, respectively, by 1, 0, ®;
let the values of k, k,, &, thcr? aiisi,f.g be named,’ respectivelys

7 '\"
,\
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a, b, ¢. After this, put &, &, ¢ for 1 —a, 1 -3, 1.— ¢, respectively,
and £, 5, E, 0, & for be', ed', abf, e, da, a'b; so that
Etmt {=E+u'+8, bl =7l
and the reverse equations are
alf-E)=oq'—§ b(n—n)=0-§ cl{-)=F—n
Then the expression found becomes
Emg + fnd + Enft+ o'md + (U - - DI
The vanishing of this expression is the condition that the plane;
(f, my, ...}, lying upon £, whether it be of the first or secon .k&'nﬂ.
of planes of (1, should meet Q' in two lines. « \
We may interpret this result in two ways, in four dimensiohs or
in three ; cither by regarding the ratios of the squares 68%, 7, 7,
Mg, 7y as coordinates in fourfold space, as above ; oryby tegarding
the planc of Q as representing a point, (&9, &xh/or a plane
(u, o, w, p), of threefold space. W .h%a' ;E!ib - .
In the former way, writing, as on p. 210, f,h V2 X :X’ﬂrﬁﬁnﬂ
respectively, for md, m2, — %, nd my <48y & the equation be-
comes O\ B

—aW +bX + oY 4 bT - ¥ —abX'=0.
This, however (p. 159, ‘above), .is\the equation of the tangent

solid of the locus expressed b}u(X 1}')% +(X Tk + (I,VT)# =0,at a
point determined by the yalues of a, b, o3 and this locus is no
other than the locus, 3, ?tliterwise expressed by
(XXYEH (YY) +2Z) =0,

(Cf. the scheme gi.vefl'abo"ea p. 210.) So that we have Verilﬁe(ti‘ tl:'e
statement madgh(fp/ 211), that the Eransformation from tKe e
fold to the thresfold space, changes the section of 2 into a Sumer
surface, ThE\values of the parameters @ty by 0y 1N teril_lg o h'cl(: are
onﬁnateg;gfthe pOillt of contact of the tangent solid, whl

given im\peneral (p. 159, above} by , .

XY = WT - XY XY, WTX =X¥ -WT-X'Y,
O 9Ty = X'Y - XY'—WT,

are casily found to be ¢ = — pp, b=~ A, €= = M ‘fhere

A= ;2/533 w= ”‘2ij33 b= 73’2/”3'

. . ; the quadratic
Thus we see that the coefficients, in the equ;;;g’]m:g:m of (i)oints of

tom IEX, Ry Ky Ky Ky Feys sy if mgarded as .
a COI:TiC-, lead to o r.;nge related to any one Ofdthﬁ ;ngee';:a;%’eﬁ?
previously comsidered. (Cf. p- 127, above, an .

above.)
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In the latter way, replacing £, o, & 7 by @, %, 2, £, so that
P=(+a2*— ¥ — =¥, ete,, the equation found represents a quartic
surface in 2, 9, 5, 2. On expansion this is of the form
2L (E 2 +g5") + R (U - )y + 2% + (U~ £) (Pi+ )

+8(n' — Eyayat + £ (@t + o+ 2+ #9) =0,
The four ratios of the coefficients in this equation are functions of
only three, and can be expressed in terms of the ratios of four
quantities, p, g, 7, s, so that the equation becomes N\
LBt U2 + =) + V(¢ + 22 2%) O\
+ W (£ + 2°9) — 2M i = 0,
with A
U=@+p =g =mgr—sp), V=(s+q-s — PP ~ sq),
W=(+7r—p ) (pg—s),, "
and O

M= (pgrs)i [H (s+ ap+eqgte fsf")];ﬁ{q?. _QQ)(T'?’ - 5q) (py — s,

the product indicated }q; symhol IT béifg for the four factors
in which el‘é\'?ﬁ‘,d%: f-ﬁulf .at[bbi‘?) e this,%emark that the ratios of

P> 4 7, 8 are expressible by the ratios of’the four

Pi=p—g—r+s, 8, ='_P+ﬂ:f:5‘+ 8 B, =—p—g+r+s,

8, =p}]—‘g"+ 4§

let these latter be taken so.that

QRE/PS=qpf(n - "), ERQS =E(E-¢"), PQIRS=¢i(¢-¢"):
then the caeﬂﬁcicnts@"ﬂ W have the forms stated. And these
equations, it way be verified, lead to

SIS PR+ e = (Y0 = 8Pl — L PE—E PO,

of which thesleft side is 256.8*pgrs; thus the coeficient M is also

found t({im\expressi ble as stated,
But phe&quation, with coeflicients expressed in terms of p, ¢, 7, 5,

L

represents a surface which can easily be seen to have a double
mp‘u.i‘lit at the point for which 2, ¥, %, t have the ratios of p’}, g%, 73, st
\"}‘:d, therefore, also, at the fifteen other points obtainable from

is by (i) change of sign of two of p, g%, v, (i) interchange of

two of these accompanied by interchange of s* with the remaining
one.

The history of this equation (first found by Roseuhain, or Gopel, 1846,
1847, in algebraical investigation of theta functions of two variables, arising
from the study of the irrationality involved iu the square oot of a sextic
polynomial) is very interesting, as shewing how gradual tho synthesis of 3
simple fOnception may be. The reader may compare the writer's Abel’s
Thearem (Cambridge, 1897), pp. 467 and 338— 340,
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There is, we have scen (cf. p. 46, above), a precisely identical
relation in w, v, w, p, representing the guartic envelope of singular
planes of the quadratic complex. It may be verified by direct
algebra that this consists of the tangent planes of the quartic
locas; but a geometrical proof occurs below (p. 222). *It is easy to
specify at once, through any point, (2, %', ¥, '}, of the locus,
six planes of the cnvelope.  For instance, that the plane

af —yx +zy’—ta’=0 :
is a plane of the envelope, follows, if the equation of the envelope is
satisfied by (u, v, w, p)=(¢, — &, ', —a’); and this is true, becanse,
the equation of the locus is satisfied by {z, ¥, 2, )= (', — ¥, ', =&
This plane is the focal plane of (2, ', 2, ¢’} in the linear complex
whose equation is £ +/=0. The same argument appliet~to the
focal plancs in the complexes ! —I1=0, m' tm=0 =0,
When the envelope has been shewn to consist of thetangent planes
of the locus, it will thus follow that the six fotal\planes of any
point of the loeus arc tangent planes of the losus: ,Eaﬂty, the six
foci of any tangent. plane of the locus arcwwavéiﬂs of the Tocis" &

Ez.1." The z, y, z, t of p. 216, arising\from Ex. 1, p. 205, refer
to the point of ordinary space, represehj:eﬂ, as on p. 46, b__Y the
plane on p. 218, only if the line-cadrdinates are such pairs as
Wyt x, i, —x,. The cquations (agl)= 0, (k;27) =0 are unaltered
by a change of sign of one orqnore of ;. If two of these, say
2y, 2y, are changed, this is equivalent, on p. 218, to changing the
signs of m,, ,, My Ty, Mg Mgy and this changes (2, % % t). into
(t 2z —y, — ). By fuoh changes, leaving the determinant
(hmyt) = + 1, we obtaif 6 poinis of the surface. Changes leading to
{hmng) = — 1 give 16 planes satisfying the tangential equation. th

e 2 A parti€itlar case of the above equation arises when the
pairs of coefficidubs (k,, k), (Jus Ka)s (kss Kie)y interpreted as para-
ueters of poiftsrof a range, arc those belonging to an 1I:.!V0111i‘,10}111.
Then, as is\easy to sce, we have &' —»’ =0, and the equation of;:ve
Kummer, &ivtace, in w, y, 2, £, s without the term In zyzt. tg
can, cofespondingly, suppose s= 0, and the sixteen double pottt
‘:'“ﬂ§fsf§\~0f four such sets as "
Oud, — g2, o), (—sd, 0, 8, gb), (gh —p% 0,7 (P b gt 14 O)
The surface then meets each of the planes @ = 0,y= 0; :8=(-)’ tt;i?;
D two conics, which interscet, in four double points | lngt g the
};11:3 ne. 'This surface is the Tetrahedroid, or, essentialy, It 15

ave Surface, of Fresnel. , "

Of the-fsixteen double tangent planes of this surtf_atﬁ; ‘;‘2'32
tOuching it along a conic, there are four through1 EﬂCht% ‘i the
findamental points, (1,0, 0, ), ..., (0, 0,0,1). Those throug
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last point, for example, contain the four common tangent lines of
the two conies in which the surface is met by the fandamental plane
t=0. The eight points of contact, with these two conics, of these
four common tangents, lie, with the four conics in the double
tangent planes through (0, 0, 0, 1), upon a quadric surface, in
regard to which the four fundamental points are a self-polar tetrad.
The four double tangent plancs through (0, 0, 0, 1) meet, in pairs,
in six lines ; each of these lines contains two of the sixteen double
points of the surface, harmonie conjugates of ouc another in regrd
to the plane £ =0, and the point (0,0,0,1). The six dou ble potits
of each of these plancs are, then, evidently, in involution{ o the
cotic which contains them. Cf. pp. 127, 141. O '

In fact, as the equation we have given at once shewsgthe equation
of the surface may be formed from that of a generalguadric touch-
ing the four planes # =0, y=0, z=0,¢=0, by s&placing, therein,
&, 3y 2, 1, respectively, by 2%, %, &, 2. The fodrquadric surfaces,
such as that deseribed, each containing twelvé\of the double points,
are obtained, by the same substitution, ffént the polar planes of
the four fuﬁﬂﬂrggﬁé@jﬁﬁﬁﬁﬁs%ﬂé'gard to.this quadric surface.

The quadratic complex, of which this’particular quartic surface
is the singular suface, may be taken™to be that correspending to
the equations, in the fivefold spacey i+ ... + &2 = 0, and

k(@ — 2 + ke (182 22) + by (2F — 27) = 04

this follows from what is&aid as to the involation, if we recall the
forms of the coefficients, in the Kummer surface, in terms of
Ry ..oy K. The equation k, (27 — B+ ... =0, it i3 easily seen,
is that for the comgkx of lines, in the threefold space, which meet
two quadric supfaces in two harmonically conjugate pairs of points.

A\
Kummerls’ surface in the geometry of space of five
dimensfons. It has heen seen that Kummer's quartic surface is
the loghgvef points for which the conc of lines of a guadratic eom-
plexibréaks up into two planes. If we represent the lines by points
ofva guadrie, O, in fivefold space, and the quadratic complex by
~8he points common to Q and a further quadric, £}, the representa-
tion of Kummers surface is by an aggregate of planes lying on {2,
whose conic intersection with ) breaks up into two lines; as we
have already seen. We may follow the thcory through from this
point of view, without explicit reference to the lines in threefold
space. Thercby we obtain a dearer view of some of the results.
But we also, then, make an interesting com parison with the theory
of the locus, T, the intersection of two quadries in fourfold space,
studied in the preceding chapter, '
We denote the eoordinates in the fivefold space by a, i, 3,4, %, @
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We suppose the equations of £, &', respectively, to be
b+ wt=0, hat+ ..+ =0,

We may alse denote by Q" the quadric whese equation is
ka4 ..+ kiwt=0,

If a plane, a, lying entirely on {2, meet ' in a conic which breaks
up into two lines, it is convenient to have a notation, and a name,
for the point of intersection of these two lines, It represents what,
in the Iine theory in the threefold space, is called a singular line of
the quadratic complex. We shall (Eeno'te the point by P, andacall
it the focus of the planc o, in regard to Q. It is shewn that(Pdies
on (1, as well as on Q and (¥'; and, further, in consequence, that
the tangent fourfold of ', at P, touches £, at a poind} @, lying
on the plane a. If (2, %, ..., @) be the coordinates’df> P, the line
PQ is the locus of points whose coordinates are of ‘t;hé’ forms
(For 4 0) By oy (B + o) 03

for different values of o. This line is thensanpart, the generalisa-
tion of a line considered, for two quadricae% 'CI%?SH{}S}»% ag‘en?b‘ﬁ'ﬁ}a
p- 92) and, for two quadrics in fourfoldspace (p. 183, above). This
line is of great importance here, and'we may call it the focal line
of the planc a.  If the plane o beof the first kind, of _lanes lying
on £}, we shew that the plapelef O of the second m_d, dra;“fn
through the focal line, is likéwise a singular plane, meeting & in
two lines, This will be seen to give the result, in the threefold
space, that the enveloge of the singular planes of' the quadr"atlc
complex, in the thm@ld space, is the locus of the singular points.
The intersectionsyof siich focal lines with the fundamental fourfolds
2=0, ..., w =0 Juggest the consideration of six quadratic coni
gruences, assdciated with the Kummer surface, In a very ‘natura
way. Furtheryit is shewn that the %ﬂane, o, which meets {) 1n t_“’g
lines, equally meets every quadric of equation et + e w?'(i

. In twn%ﬂ'es‘, if &, be any (fractional) linear fonction of %, ]fnt l:%—
Pi?nd'ght of 7; and that the focal line is the locus of the foci of the
plane in regard to these quadrics. .

We shall speak of a i%urfo]d, of the fivefold space, 85 i fi?"’“”

shggesting this, in general, as a name for an (n— 1)-({0 mﬁ:;
space of a fundamental n-fold space (for which the word form
heen used),

Consider a plane, a, lying }m 1111, u
vonic, ILet O be any point of this p g
supposed, at first, nr'?:t IEO lie on ", Let T be theot_ange ;%n;l e&f‘
Q at the point O, and H be the polar prime of 0 in {ue h contains
The prime 7" meets O in a point-cone, of vertex O’I}V ” a quadric
% a3 one of its planes; this cone meets the solid (73 1) ina g

ally meeting {' in & proper
?:ne;y thus O lies on £, but s
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surface, which we denote by w. The line in which the plane ¢ meets
the prime 11 is one generator of the quadric surface w; this line
we may denote by & The solid (7, I1) contains another quadric
surface, in which this solid is met by the quadrie (173 this quadric
surface we denote by ', :

The Yine 7 is the polar line of O in regard to the conic (4, ©');
and meets §’ in the two points of contact, with this conie, of the
two tangent lines drawn from 0. But, if the plane a meets £} i
two lines, these two points of contact coincide. Conversely, K0
does not He on (), the intersections of I with {}' can only coihgcide
when a meets {3’ in two lines. The quartic curve of interscption of
the two quadric surfaces, @ and o', of the threefold spacedT, 1),
is tuuche?l, we know (Vol. 1, p. 69), by four genevatows of w, of
either system of generators: in fact, the pararuetérd '\, p of two
generators of w of different systems which meebon o, satisfy a
(2, 2) relation, of which the u-discriminanf\s “a quartic in A
having its two invariants equal to thosc of {he A-diseriniinant. In

articular, the eross-ratio o A tangentd of the curve (w, o) s
1}-;)he same a8 %CE olfa%&e rﬁl}ang rﬁs q%?é{tefore, the neccssary :Bnd
sufficient condition that the conic (a;{l’) should bhe two lincs, is
that the generator /, or (g, T1), ofsthe quadric surface w, should be
one of these four particular gengtators. Thus we see that, through
a point, 0, of £, not lying on ¥, there can be drawn four planes,
of either of the two systems 0f planes of {2, to mect 7 in two lines.
"This is the representativeaf'the fact, for a quadratic complex of lines
in threefold space, that(fatr singular pointslie on an arbitrary line,and
four singular plands, ‘with equal cross-ratio, pass through the live.

As was suggested, denote the intersection of the two lines of &,
in such a plame s, by P, and call it the focus of this plane in
regard to Q4 »The tangent prime of ' at P contains thesc lines,
and contaigs the plane o, which lies on (. This prime meets 3 in
an (¢ guadric, lying in a fourfold space; such a quadric, it s
easily proved, cannot contain a plane, unless the quadric be a point-
cofteswith vertex on the plane. Thus the tangent prime of 1V at P

o Jigets ) in a point-cone, with vertex on the plane, a, of (. There-
. JHore, this tangent prime touches {3, at this vertex; we denote this
vertex by §. Conversely, if the tangent prime of £}, at & point P,
which lies both on £ and €, touch {2 at a point @, there can be
drawn, through the line Pg, a single planc, lying on ), of cither
system of planes of €, to meet £ in two lines lntersecting at P.
For, tl:_'e line QP, lying in the tangent prime of O at &, weets {1,
there,' In two coincident points, and meets O also at P; this line,
therefore, lies on 0. Thus there can be drawn, through this line,

a definite plae of O of either system. Such a plane, being in the
tangent prime of () at @, that is, in the tangent prime of (" at P,
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meets £ in two lines which meet at P. It may be remarked too,
considering the polar primes, in regard to £, of the o points of -
the plane &, that, among these wiil be the tangent prime of £’ at P..'
This contains the plane a, touching & at @. The polar primes,
by their intersection with ¢, thus give only w? lines, the lines of
the planc passing through P. As suggested, we may call theTine -
PQ the focal line of the plane a; it lies on £}, and on the tangent
prime of ' at P; but does not lie in £, in general,

With the notation explained above, the point P being (x, ..., @),
the condition that the tangent prime of 3" at P,or o

kyray + oo+ kyww, = 0, - )
shonld touch Q, is k'xf+ ... 4+ kguwy® =0, the point of contact, @,
being (kyay, «.., &gw,). Thus P lies on a surface compiah to the
three quadrics 0, £¥, ©”; and the general point of the“focal line
Pg has coordinates (&, + o) &y, ..., (Ko + 7). N\

The tangent lines of a Kummer surfa.cg al & point, ) We
have seen that in general there are four ﬁg&pf J%}_ of either
system, passing through a point of £, which e il v
We have also scen that such a planes's,contains a focal line,
through which there passes a plane ofi (3, of the other system,
which also meets ¥ in two lines\"We consider, now, the four
sinpular planes of €1, of either System, passing through & general
point of this focal line; we shewithat these consist of the plane, ,
spoken of, in which the lined&the focal line, this counting d?Ubl)’,
together with two other planes. Let the point of the focal line be
called S. We take théfangent prime, T, of {2, at the point S, and
the polar prime, 1, of &, in regard to {'. The tangent prime con-
tains the plane a, andl; therefore, contains the focus, P, of the plane;
the tangent primtejof ()’ at P is the tangent prime of { at 4 point,
Q. of the focalMite, and also contains the plane a. Thus the p(;lhar
prime of &\ifiﬂiegard to 0, likewise contamns P. N?xt, we take 1_3
two quadifesurfaces in which, respectively, O and (& meet the solt
Interseetiph of 7' and IT. These two surfaces have a common tan%j:g
E{gne'xit P. For, to express briefly by the symbols what can
& Btpressed in words, if the point S be of coordinates

i+ a)my, .oy (ka-l-ﬂ')was .
where P is (@, ..., ,), the two primes 7, 11 are, respectively,

(har) +o (wao) = 0

and (kpam)+ o (Jeyy) = 0, :
and the tangent prime of ) at P is (2m,) = 0, where ng%)iezo{?
¥+ ... + ww,, ete, ; thus, the tangent plane of the former, @
the two quadric surfaces, at P, is given by
' (way) =0, (kiaxy) =0, (ktaz) =0

oA
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Again, the tangent prime of O at Pis (kyax,) =0; the tangent
plane, at P, of the latter, o', of the two quadric surfaces, is, there-
fore, given by the same three equations. This common tangent
plane is that of the surface of intersection of the three quadries
0, ¥, 7, and is independent of the position of & on the focal line
(the values ¢ =0, o =w not being considered). 1t is, however,
eamcliz proved that, when two quadric surfaces, in theeefold space,
touch one another, the generating lines, of a particular system, of\
one of these surfaces, which meet the common curve in two cofu®
cident points, consist of the generator of this system, througlithe
point of contact, counting doubly, together with two other gene-
rators. This proves what was Said}: for it was seen that thewplane o
gives a generator of the quadric w. It was also seen thatithe plane,
B, of 0, of the other system from a, which passes thfgugh the focal
line, meets £} in two lines; the argument :‘shews}ﬂmt this also
counts doubly, among the four planes of this s§stem which can be
drawn through any general point of the focallinc.

If we recur to 4 he g dratic complex of hincs, in the threefold
space, the points ol the beal Tnk; PQ, vépresent lines, in the threc-
fold space, each of which has two coificident intersections with the
singular (Kummer) surface, at the same point, this being the point
represented by the plane «; that“is, the points of the line PQ
represent the tangent lines of“the singular surface at a point.
These lie in the tangent plane of this surface at this point, which
is represented by the plape'@ through the focal line, in the fivefold
space, Ag this, we ha:’i{eéeen, is a singular plane, counting doubly,
we see that, in the threefold space, any tangent plane, of the surface
which is the locupof singular points, is a plane of the aggregnte of
singular planesy'as was said (p. 217). Tﬁe point P, of the foeal
111}e, whereat*the tangent prime of {}' is equally a tangent prime
of Q, is thie point of intersection of the two lines in which the
plane ghieets ', and also of the two lines in which the plane 8
meets"Q’. Thus, in the threefold space, one of the tangent lines
at any point of the locus of singular points, is the intersection of

. the* two planes into which the quadric cone of complex lines,

{ "\thirough the point of contact, breaks up; and this tangent line also

contains the two points through one of which passes every line of
the complex lying in the tangent plane.

The inflexional directions at a point of the Kummer
surface. It can be proved from the present point of view (and
another proof occurs below) that, in the fivefold space, there are
two poinis of the focal line, PR, such that, of the four singnlar
planes through the point, three coincide with the plane a. ‘Lhese
two points represent the two inflexional tangents, in the threefold
space of the quadratic complex of lines, at the point of the Kummer
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surface, It is interesting to prove this from the present point of

view because, as will be seen (p. 281, below), we are then able to

put the inflexioual curves of the Kummer surface into correspondence

with the lines of curvature of a Cyclide. We assume that, when,

in threefold space, the curve of intersection of two quadric surfaces,

which touch, has a cusp at the point of contact, then, of the
generators, of one system, of one of these surfaces, which meet

the other surface in two coincident points, three are coineident in | A
the generator of that system which passes through the cusp. The\

N

reader may examinc the case of the surfaces 2 A\
k=2 -y, tz=(a+L)a*+ (& - Dyt +ze+my), O
of which the common curve has a cusp at (0, 0, 0, 1) if aforp be
zero. We require then, by what has been said, that thé’etirve of
intersection of the two guadric surfaces (7', I, £} apd (T, II, ),
lying in the solid (7', TI), in the fivefold space, shouldvhave a cusp
at P, ov (x,, 2, ..., wy), where T, II are defingd from a point,
8, of the line PQ. Let U, U, U” denote,'{@, PRIS o in
respectively of the quadrics O, ', ", at tlie point P. "Then’the
tangent prime, 7, is ¢U + U, and the polah prime, I, is cU" + U".
The quadric cone, in the solid (7', IL) with vertex at P, which
contains the curve of intersection (T3, {2, ('), spoken of, may
be given by 7, I and 02 + (', this heing the intersection of_' 1l
with the point-cone (607 + U’,"081+ Q') The two iangent lines
of the curve, at P, arc thelintersections of this cone with U.
These eoincide if the pla[leXU, U’, U") touches the cone. This
will be so if a point, @53/, ...), exists on the cone, such that the

(&5 am i
o ) : ) s point, contains P. Namely, with
ngent prime of ¢} .;}) , at this poin ciuo, 1I(1k1 +a)a?+..=0,

(b + o 2 ... =0, (B + o) 2o + .00 . ;

we mus)t have (') x’.z('g +... )=0. The equations are satisfied b¥
taking (%, + YW 2y, ..., (hy + ) W = Ty prmuded a l:e onef)
the roots of £he equation (k, + o) @’ + ... + (ks + o) 2= 0. In
V‘i]‘t]_[e ij’ga';‘{- —— 0’ k1m02+ pea = 0’ klﬁm.,?«r- Y -_—Og thlas tl;s ?
quadratig equation. 1If its roots be X and p, the two p;)‘lil_l t°
t(}che foeal line satisfying the 'conditic)ms are ?;05: (T‘fwfoo nates

‘1\'?;1 Zos .., (ks +2) and (%, + p)¥os -ora VT B .

The) assoéig.t‘;d t;)lu;.d.ra.tgc congruences. There alret;]:;;
upon the focal line, six points of great importance, :l;amel 0
where the line meets the fundamental primes given )’_xo w,h;;
w=0. Cousider, in particular, that point for which uf'i we may
coordinates are (Fey — Kog) Ty <o o» (Fos — ks) Doy 0. Th]i} : mtwo lines,
denote by Q. A plane, lying on }, which meets lﬂnw'=0 g
will likewise meet the quadric (k + )a* + ... + (k'-s t)he tanéen;
sy, 00 + (', in two lines; and conversely. An rdinates are
prime Of Q, at the point of the focal hne Whose CO0]
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(Fy + 6) 2oy ..., (ke + 8) o, will be the tangent printe of the quadric
g0 + @ at the point P, or (@, --., w,). In particular, for 8 =~ k,,
the quadric @' —k,Q is a point-cone, passing through the inter-
section of & and ' this cone we may denote by K. The. tangent
prime of @ at @, is the tangent prime of the cone K at the point P,
and, therefore, at all the points of the line joining P to the vertex
of this cone. 'To obtain the planes of Q meeting 0 in two lines,
which pass through @, we consider the solid intersection of thea
tangent prime of € at ., that is, the tangent prime of the poirt
cone K at P, with the polar prime of ; in regard to this ¢One;
this polar prime also contains the line joining P to the yeiteX-of
the cone K. Then we consider the quadric surfaces whichvare the
intersections of this solid with , and with the cafie\X, The
latter of these quadric surfaces, say o', consists, héwever, of two
planes. For, the intersection of a quadric point-gome with a prime,
TI, passing through its vertex, is a quadrid\point-cone in this
prime, and the intersection of 1I with a,{gngent prime of the
former : he latter cone (p. ¥24) above). Wherefore,
the quﬁ%é@lﬁrﬁéﬁzﬁ%ﬁ%ytﬁgih%mecti(rga Sf a point-)cone, lving in
the fourfold space TI, with a tangedt)solid of this. The inter-
section, we know, consists of two _planecs, hoth containing the line
joining P to the vertex of thiscgne. But, the generators of one
system, of a quadric w, in thé¥threefold space, which meet the
intersection of this with a pair of planes, o, in two coincident
points, consist of the twe'gencrators of w at the two points where
this is met by the line‘(’)’fginbemection of the two planes; and each
of these counts dodbly.” Thus we see, for the figure in the space
of five dimensiong)that the planes of £, of the first system, mecting
€' in two lipesy which can he drawn through &, consist of the
plane @, containing the line @.P, counting doubly, together with
another plahe” also counting doubly. It 1s clear, however, what
this othér plane is. For, if the line joining P to the vertex of the
cong{& meet Q again in the point P, of coordinates (Zay o2
oy I0y), the point P is equally on the cone K, on the tangent
orime of ) at @ (which touches the cone at all points of PP');
jand P is also on the polar prime of @; in regard to this cone.
The quadric surface » thus passes through P, as do the two planes
constituting the quadric " Thus, the second singular plane, ©

the first kind, through @,, is the plane of 2, of this kind, which
passes through the line @,7. And, there is a plane of the second
kind through each of QP and @,P', which is likewise & singular
plane connting doublly. i

In general, an arbitrary plane, lying on (), meets the surface

expressed by the three equations

=0, #*+.. +*= 0’ (kl - ks)'ldfg—l- ves T (ks - fifﬁ)_l =0,
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in two points, This surface, however, has the property that the
tangent prime of {), at any point of this surface, touches the
cone K, whose equation is (& — k) a?+... +(k,~ k) 2*=0. Thus,
the tangent primes of (), at the two points where the plane meets
this surface, both of which contain this plane of £, are two
tangent primes of the conc K ; they are, therefore, the two tangent
primes of K which can be drawn from the solid joining the given
plane to the vertex of K. Take the case when, as above, the
planc of {2 considered is a plane, e, which meets the cone K in twod
lines ; then, as may be proved, the plane is such that the two
tangeut prines of the cone through the plane are coincident. ; We
thus inicr that the plane @ meets the surface in two coiptident
oints, R
P In the threefold space of the quadratic complex of lines we thus
have the following results: Among the tangents at{any general
point of the singular (Kummer) surface, there are #ix which touch
this surface again (these are the tangent linesfrom this point to
the quartic curve in which the tangent p}ah;{ﬂcuts‘ the surdace).
Fach of these bitungents, besides beloriftifr "Rk AT A
quadric complex, belongs to one of \six linear complexes, these
complexes being such that any twowdre conjugate (or apolar).
Of the lines of the quadratie confruence given by the quadratic
complex and onc of the linear, eemplexes, there pass two through
an arbitrary point ; but each wf the bitangents spoken of consists
of two coincident lines, "The singular surface thus appears as the
Jocal surface, or caustic §wface, of each of six quadratic congru-
ences (ef, for instance, Oarboux, Théorie. ..des Surfaces, 2° Partie,
Livre 1v). The nahﬁai form for the equation of the Kumnmner
surface when regarded as the focal surface of a guadratic
congruence s, Hat given above, Ex. 4, p. 135, Chﬂ’* Y. Tlt';
theory, in tHe)space of five dimensions, applies eque ly to bo
systerns of Jlanes of O so that there are also results in the three-
fold s;xlxé..\i'l'lich are the dual of those we have stated.
The tommon singular points and planes of the six con-
ﬁ'lfllfqﬁces. Tt the fivefold space, the surface given by
N =0, 224 3= 0, (k=g @+ (- k)T P=0
15 the intersection of two (w0 *) quadrics of the fourfold SPaCCt;:: ?t-
This surface has been studied in Chap. vr. It ap Ties on 02,

S . " : ich
contains sixteen lines, Through each of thes;ii::? ‘Ivt follows, from

there passes a plane of £, of each of two s¥: -
what ]I: sald a}l:?u(:'[elf that each of these two planes I;:fi III; 1?1.1131]{
many tangent primes of the cone which we deno tha{ B two
also ‘appears from a previous remark (p. 48, ab_ove)(,)f ) with the
Planes of () through the line are the n on "

B.G.Iv,
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-polar solid of the line in regard to {2; the two planes, therefore,
lie on the tangent primes of Q at all the points of the line, and
these primes are all tangent primes of the cone K. Thus, there
are sixteen plancs of the first system of {1, each of which is a
singular planc of special character, baving the property of con-
taining, not two but, an infiuite nunber of points of the surface
given by

w=0, 4.+ =0, (-7 + .. 4 - k)T =0 A
Yor greater clearness we may give the equations of these plands.

Denote by £(#) the sextic polynomial whose roots are £ =k 53,
and by # the value, for a2 = %, of the differential coeflici€iit of] ot,
ete. We use the fact that, for any value of X, the sum, )

(=2 A + o+ e+ MY
vanishes, for =0, 1,..., 4; it 1s so, in pactiddlar, for A= — k.
Denote one of the two squarc roots of £, thatys; of GF (I {0k, by
&r- When A, g vary, the point whose coor@Q}ates are

SERERY RV BT g3kt N (B + )

describes a plane. This plane meets{the prime w =0 in the line

which joins the two points R

ﬂ:‘g‘l_](kl - kﬁ)gs ag':;_l(]‘;s - ?6.;)25~931’fg'1_1 (Fy — Bgdyerns ot (k- ku)so]'

This line lies on the quadries(h, — k)@ + ... + (k= k)7 v*=0.

The plane itself lies on the\quadric 2. The tangent primes of (,

at the points of the' lm\e where the plane meels w=10, are the

tangent primes of thé cone K, or (b, — k) + ... + (ks — k) o= 0,

at the points of t.hc' Iine joining the two points

[g1_1 (kl‘T_"Zéﬁ.); aey 59,'5_] (ka" ‘I“‘d)s 0]1 [é,’;ul: ey gshls gl1_l]»

The linc joidinlg these two points lies on  and on lhe cong

so that.it"hies on 2 and £); in fact it lics also on 17, the coordi-

nates of every point of the linc satisfying Lhe cquation

N B+ 4+ k2P =0,

7N\ A . .
“\\By taking all possible combinations of the ambiguons signs 1

&5 +evy Ss» the plane given by the points

L (e + Ny (B4 oy ooy g (B + ) (B + )]

becomes, in turn, thirty-two different planes, sixteen of one syslem

of planes of {}, and sixteen of the other. If we denote by (par)

the product (&, — &) (&, — kp) (k, — &,), the equations of the plane

can be shewn to be the three B

B (123) gt = (23m) g2 + (Bln) guy + (12m) g5,

where m = 4, 5,6 and 2, = w, v, . The ratios of the coefficients of
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the coordinates in these equations are such as are unaffected byl
any, the same, fractional linear transformation of k,, &, ..., &s.

In the threefold space of the quadratic complex of lines, for any
one of the six quadratic congruences which have been referred to,
there are, thercfore, sixteen points (and sixteen planes) through
which there pass (in which there lie), not two lines but, a penail of
lines, of the congruence; and these sixteen elements are the same
for all the six congruences. These points and planes are the double
elements of 1 Kummnier surface. (Cf. Hudson, Kummer's Quartic
Surface, p. 59.) Sce the Note to p. 226 at the end of this Volume.

The confocal quadrics. It appears from what has been gaid)
{p. 214, above) that a plane of Q, which meets @’ in two(lines,
equally meels in two lines any quadric with the equation: N\

K2+ ... + Kyw® = 0, where K,=(ak, +8)/(cki1i).
When ¢ = 0, this is the same as K,=db+d~als$'when cis not
zero, 1t is Lhe same as K,— 4 + B (k, + 6)7, where"8=c"'d, and
4, B arc indcpendent of the suffix ». It w';lk\thenefone, be suffi-
cient to consider quadrics of the form iy dbraulibrary.org.in

oy + )7 o+ ... + (i )T = 0. :

OFf such quadrics there are four which-pass through an arbitrary
general point of Q; conversely, foursarbitrary values of @ deter-
nmine a sct of lhitty-two points ©f ). There are also four planes
of Q, through a gencral poirtsof £, which meet ' in a pair of
lines. We miay easily see tHab these two facts are connected.

For, consider a I')lar}e“éf Q, say of the second, system, which
meets 07 in a pair of\LigéS_ Let (2, %o ..., W) be the foeus of this
planie, in regard to 8" " The quadric

(RF o) 1a+ o+ (b + o) =0

contains thespoint of coordinates (% + @) Tyy <vey (Ko f“") %y =h(')’
lying on the ¥ocal line of the plane. The tangent. prime of this
quadric, '}-\h"this point, is the tangent prime of {3 ab theug;pt
{24, ..oaidy), and, thus, contains the plane considered. The qu IC%
thepéfore, touches every lne of ihe plane through the ’p_({)mt o
Lourdinates (&, + 6) 2y +rey (Ko + &) @ Now, let {«; o w') Oebani
point of the plane, and (kl—l—o-)“fﬁ‘i‘*'-_--‘f'(kqf“') ",’%z ’)Bto
quadric through this point. Then, the Tine, joining (# t;ezlv on
the point of coordinates (B + &) Tos -5 (Fes + @) o> llesfer!l] i fythe
this quadric. Through this line, lying in & plane o h m(? ol
second system, can be drawn a plune of Q of the ﬁrst_ ;6;’: eet::. 'y
this plane, containing one line of the quadric (ko + ) geen seen.
coutains another line of this quadric. Therefore, 25 has e
and will be proved again immediately, this plane 1s 012

PI&DES of {2’ of the first s_ystem, PaSSiﬂg .throl_lgh (x’., eary wl’)ls’ ";hlch
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cut O’ in two lines. Whence we see that the four singular plancs,
of the first system, which can be drawn through the point (7, ..., w"),
meet the focal line, of any singular plane, of the second system,
drawn through (#/, ..., @"), in four points of coordinates
(k4 o) Loy ooy (B + 0 205,
where &, hag the four values belonging to the quadrics,
4oy ta®+ete. =0, ~
which can be drawn through (#/, ..., w"). This result includes alsp
the fact, incidentally referred to above (p. 213), that, in the thuce-
fold space, the points, in which a general line meets the Knhunter
surface, constitute a range which 15 related to the pencilvof four
tangent planes of the surface passing through the Liey (Cf. also
p. 240, below.) 4,
But the quartic equation for &, “\
_ (b0 2 + L+ (B + O w0,
giving the four quadrics of the system w‘fg;\\fli pass through the
peint {&', .}E’,“%Eﬁ")fl(iéﬁﬁbé%rﬁk}yaoq&éﬂmtic‘when (', ...,w'} Is u point,
P, or (2, ..., w,), for which, beside x2@te. =0, we have
- kaftete. =0 &T{d:’ 'klsit'nz +ete. =0,
And, more generally, when, \;:iﬂi’ siich values of {(z,,...,w,), the
point (&, ..., ") is such thatse’ = (& + o) @y, ..y w’ = (& + o) w,
the quartie equation reduges to
(0= 0P [(hy A 0 + oo + (kg + 0) 0] =0,
as we see by writing(k + ¢)* (k, + 8)7 in the form
' B8 + 20 + (8 — o P (kb + &), ete,
The four rootsyof the quartic equation thus consist of the root o,
repeated, j;@gsfher with the roots of the quadratic
\§ (B + @ 22+ R+ 0w =0,
If the“roots of this quadratic, which are independent of o, be
wd?ng‘)ted by A and p, it follows that the two quadrics,
V) ) (B +Aya? tete. =0 and (k, + p) 7 a2+ ete. = 0,
contain the line PQ, joining (x,, ..., w;) and (&, 2, ..., &;50,), com-
pletely: and, further, that the other two, of the four quadrics,
(%, + 6)2*+ ... =0, which pass through any point, &, of coordi-
h o yP L .
nates (&, + o) &y, ..., (ks + o) my, lying on this line PR, coincide with
one another, both being the quadric (k, + o)™ 2*+ cte.=0. The
tangent prime of this quadrie, at this point S, is the tangent prime
Of_“Q' at P, as remarked above; and this shews, from what has been
said, that the plane, @, of the quadric £2, of the first (or second)



Kummer's surface intersected by line of complex 229

system, which passes through the line PS, meets the quadric
{(k + o) #* +ete. =0 in two lines, these intersecting at §. Thus
& is the focus of the plane in regard to this guadric, just as P is
its foeus in regard to L3, There are, however, two particular
points of the line PS for which three of the quadrics,

(fey 4+ €y a® + ete. =0,

.passing through the point, coincide with one another; namely,
those for which o =) or ¢ =pu. For each of these two points, of
the four planes of Q through the point which meet 0, and, thergs,
fore, any of the quadrics (k, + €)™ 2® + ete. = 0, in two lines, there
are three which coincide with one another. (Cf Vol. 1, \p.02;
and p. 185, Chap. vi, above.) RS

Singular planes through a more particular p\oipt. In the
preceding we consider planes of {, meeting a quadsiey®
(B 6) a2 + ete. =0,

in two lincs, which are drawn from a poing’ 0. Cousider now,
briefly, planes of ) meeting {1 in two hiffegy Eﬁlﬂfg‘ﬂfa‘}ﬁ?f'&éﬁh
a point, O, which lics on Q7 as well af on Q. This we exclu@gd
above, In this case, any plane of £, dtawn through 0, meets Q' in
a conie passing through O; if thisiconic break up into two lines,
one of these must pass throughlO* Such a line lies on £}, and on
', and on the tangent pl‘imeé’of Q and Q" at O. Conversely, the
solid which is the intersecl'{nn of the tangent primes of Q and of
Q" at 0, is met, by Q aid Q' in two conical sheets of lines, with
vertex ab @. hese havgy in gencral, four lines in commo, through
0. Through any ehe of these four lines there passes a definite
planc of Q, of thé st system, (as also one of the second system);
this plane meets (Z'Z’ in another line, beside this one, mte{t‘sﬂctﬂﬁg
this, say, in J;he}"puint P, this is the focus, in regard to £’ Oftl e
plane of f‘h\%e two lines. We thus have, as before, four singular
planes, of dne system of planes of &, passing through 0. through
Bab, 3t may happen that the plave, &, of the first sy ste_m,l s‘i'lou%‘
onglot the four generators common to the two conica ft?li s:
®ontains another of these four generators. Then the Plarll.e Oin the
two generators, which are lines of (' meeting in 0, lies

tangent prime of Q’ at O. This prime, then, contal’mntg :hglmlj:n?:
£), is a tangent prime of Q, at some point, sy ’P y 31’ coill:cides
Then @ is the focus of the plane, In regard to £’ anf sinpular
with Q. "The plane then counts doubly among the }?l::l;m of the
plancs which can be drawn from O, as ,Pa"is.ltlg thr?)u%:an be drawn
four generators. Through the line OF ly mgi_ (;;1; ‘this plane is on-

a plane, 8, of the second system of }Il)lﬁil;l*i-‘"h: tangent prime of 0

the tangent prime of ( at P, whic
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at 0. Thus the plane 8 meets ' in two lines which intersect at
03 and these, lying on & and ), are the other two gencrators, of
the four originally proved to pass through O, beside the two which
lie in the plane a. Through each of these lines, in the plane 8,
: can be drawn a single plane, of
the first system of plunes of ()
say these arc o and ¢, In the
same way, through each of the
two lines lying in the plans,
can be drawn a singulargiane,
of the second system of\plines
of 2, say these are Gyind 3.
Thus we see thatdl}ef the four
lincs originally ‘dyawn through
0, two lie in ,a‘:pl'smc of Lhe first
system, counting doubly among the four singhl&r plines of that
system which pass through O, then the othendwo of these lines lie
in a plane M‘Hﬁc&m}f%f%‘%}?} %ﬁslsing t}l{!:‘ough 0.

In this figure, the h eets, @)1 two coincident points

"
i)

M

ne
at 0. But it may happen that OP licgentirely on ', Then 1t 18
one of the two lines of ' throggh' O lying.in the plane a: in
which case, the planc of the second systen of ), say 5, drawn
through this line, coincideswgith the plane 8. But, also, OP" is
then one of the two lines of* @’ through O lying in the plave 3,
and the plane of the fidhdystem, say o, drawn throngh this live,
coincides with the pldng a.” In this case, the four singular planes
of the first systemy passing through O, consist of the plane
counting three fimes, together with the plane &, and, similarly,
the four singulaly Dlanes of the sccond system, passing throtgh O,
consist of the*plane 8, counting three times, together with fhe
plane Bp dii general, the solid, which is the intersection of the
tangeltti;pi'imes of 0 and O at O, was met by ) in a corical
sheef’, In this particular case, this conical shect consists of the two
pkm’és a, 83 and the linc of intersection, OF’, of these planes, 1%
'“\p_ra"ghe conical sheet of lines of @7, through O, which lie in this
solid.

The Inflexional (or Asymptotic) curves of the Kummer
Surface. We have considered, in the fivefold space, the surface of
points (#,, ..., 2,), for which a2+ ...+ w2=0, x>+ ... + k' = 0,
k2xg+ ...+ kiw?=0. The points of this surfacc may be repre-
sented, in terms of two parameters, A and g, by the equntions
@y = (ke + N Uy + )E [LF )WY, ete., where F(2) = (¢ —K) - (£ — &)
The parameters belonging to (a, ..., »,) arc the two roots of the
‘equation {k, + 8y 12 + ... + (Fs + O w@ = 0. Through the point
(@y5 ..., @) there passes a linc of which any point has coordinates
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(hy+ @) gy oons (Fp-- o)y, this line lying entirely on the two
quadries (&, + Ay~ a® +ete. =0, (& +p) "2t +ete. =0. The two
paints of this line, for which ¢ =2, &= p, have been shewn to
represent inflexional tangents of the Kummer surface (p. 223). For
clearness, we call this line the focal line through (zy, ..., ).
Consider now the curve, of points (#,, ..., @), of the surfacc given
by g+, =0 haf+...= 0, o*r ... =0, for which u is eon-
stant; draw the focal Tines through the points of this curve; and,
upon the line drawn Lhrough the point (A} of this curve, take the
points of coordinates (A + M@y, ..., (st A)w,. Similarly, upon
the focal line drawn through the point (A + d) of this carve, take)
the point of which the first coordinate is (k -+ A+ dr) (@ Hday);
with dir, = 4.0, (h, = A2 dA, this is the same as A\ 3

(e 4 A 2y + B dh2 + 4w (i + 07 (dx)*\, >
"Thus, neglecting the term in d\?, this point lies{on® the former
focal line. Trom ihis we can infer that the {beal lines, of the
poinls of the eurve in question, along whichypis copstant, form
a devclopable surface (cf. Vol. 111, p. 135@‘}\(\?@1&&%@11&114&13}‘8@ §ri®
the locus, as A varies, of the point Whpsf?.éoordiﬂatxzs are such as
b+ 0y or (k=) G+ pHOLGRE The poiats of Bhs
cuspidal edge represent, in the eviginal threefold space of the
quadratic complex of lines, a sequience of inflexional tangents of
the Kummer surface, so taken thai, to any on¢ of them there
follows, in a lmiting sensénanother, lying in the same tangent
plane of the surface. Thuspthe cuspidal edge, in the fivefold space,
regfl"ﬂsents the ta.iagenK‘hITéS of an inflexional curve of the Kummer
surface. \

Ez. Shew thatythis curve, in the threefold space, 18 of order lﬁ’
r'iﬂd of ggnug'ﬂ_ﬁj when 7 is gem:ral. There are, _h(JWEVEl} Slllx
particular priheipal inflexional curves, for which g has one o 12 5&
e kg 3., — Fs: these are of order 8, and of genus 5. Cf. p. 185.

It is gfSnterest now to shew that the inﬂexim}al curves of the
Kunimasurface are in correspondence with the lines of curvature
of &Cyclide. Consider the two planes of the quadric, Q,tﬁl ﬁ"‘;;

ol space, of the two systoems, say a and B, which pass m%%e
tHe focul line joining the points (@, -+ @)y (s "".k“w“){g 0 at
solid determined by these plancs lies in the tangent E”me o ?n
every point of the focal line. This solid meets any _xed.p rlm: b
a planc, determined by the two lines in which the prime ;’Se mitioz
the two planes. Or, this plane may be defined as the ];: ;:i ent
of the three primes consisting of : the fixed prime; 1; eeets gthis
prime of Q at the point, say €, where the focal line -Iged oint
prime; and, the tangent prime of {} at some other speclfor xfhich
of the focal line, say the point P, or (@ o)y
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a2+ ..=0, bxt+...=0, krr24+...=0. It will he sufficient
here to take, for the fixed prime, the prime w= 0. As P varics,
the point &, describes a surface, in w=0; as § is on 0, this
surface is on 2 ;as , is of coordinates (k, — &) @0, ..., {k;— k) m,, 0,
this surface lies also on {(k,— &) 2+ ... + (&~ kY1 *=0. Thus,
the tangent plane of this surface at €, which is given by w =0,
(Fi—-Ekyaay+ ...+ — Epyor, =0, and oo+ ... + v, =10, is the
plane spoken of, in which the prime w=10 is met by the solid
(%, B). We put X, =(k — &) ao, ..., Vo= (%, — k) v,, and denble
the quadries (&, — %,y @* + ... =0,2°+ ... =0 by @ and (I)’,,Bg}:-pec-
tively. The general solid passing through the tungentyplan€ of
the surface (w, ®, ®), at the point (X,,..., ¥,), namely, the
tangent solid of the quadric [, (k. + ) © + &'], whscequations
arew =0, with (k, + 8) @z, + ... + (b, + &) vy = 0,18 e intersection
of =0 with the tangent prime of £ at the\ppint of the foeal
lire whose coordinates ave (k 4 )2y, ..., (kg9>F) 1. This selid
meets the surface (w, ®, @) in a quartic,gurve having a double
point at (X, ...,‘#'D), nd there are two valies of ¢ for which this
double point”¥ WAL Y18 'Chapl 31, above). These values
of 8, as we see at once from what was’said in Chap. v1, are given
by (k= kg a® (b + )7 + ..+ (B2 02 (s -+ 871 =0, that Is, by
22(F + 0y + L ot B+ O R (B + )7 =0, We have seen
that therc are two points of sthe focal line with the property that,
of the four planes of Q drawn through each, to meet Q' in kwo
lines, threc arc coineidebh: the tangent prime of ) at such a
point, by its intersectich with Q, (3" and the polar prime of the
point in regard to B gives a quartic curve with cusp at the point
P (p. 228, abovef\It now appears that this same tangent prime,
by its intersegtion with w =0, {2, and the guadric
O ey =k a4 (b — k) 2= 0

.which,‘théthel‘, represent, in fivefold space, a congrucence of bitan-

genj:s‘af the Kummer surface—gives also a quartic curve with a
cugpjat the point, €,, wherc the foeal line meets w = 0. Tiither of

~the two particular points of the focal line, in the former case,

represents an inflexional tangent of the Kummer surface; in the
latter case, as we have seen {(p. 186, above), the intersection of
with the corresponding tangent prime gives, in w= 0, a surface
which projects, from any point of (} in w =0, into a sphere, of an
arbitrary threefold space; determining a tangent line of a linc of
curvature of a Cyclide. We recall, now, the method, previously
explained (p. 55, above), by which we pass from a line, of threc-
fold space, to a sphere; this consists in taking the threefold inter-
section, with an arbifrary prime, of the tangent prime, of the
quadric £ in fivefold space, at the point of this which represcnts
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the line, and then projecting the surface in which this threefold
meets ). We see then that, by this method, the inflexional line
of the Kummer sorface is transformed into the sphere having
stationary contact with the Cyclide along a direction of curvature.
Moreover the cuspidal edge spoken of above, whose points are
given by @ = (%, + MF (R, + w¥/LF ), ete., with A variable but
@ constant, which represents the inflexional lines of the Kummer
surface along an Inflexional curve, corresponds to the line of ~
aurvature on the Cyclide, represented, also with A variable but g
constant, by the curve in w =0 whose points are given by O\
@ = (e = ko) (b, + M (B + L7 ()T, ete. O
Further, in Lies transformation, by which the correspendence is
established, there ave two lines corresponding to a sphere. The
second point, in our figure, thus associated with the.peirt

=+ 0 (LS (), el
is the point with the same coordinates @, ...,pbut with a change
of sign of = Thus (p. 224, above),, thetedhrauik anlacigunl
tangents of the same inflexional cury@y'of a Kummer surface,

corresponding to the same sphere of tationary contact of the line
: ; : the points of contact -of these

of curvature of the Cyclide; and}

are the two points where & bitangent of the Kummer surface
touches the surface. The a,ggl‘egate of these bitangents 15 a ruled
surface in the threefold space, which is of order 8, representEd,

m the fivefold space, by the carve
w=0, 24 .., =0, fk\—.kﬁ)_lm"ﬁ— =0, (& +F’)_1'7"BI+ =0

The complete inteysection of this ruled surface \Tlth.the Kumfnleé'
surface is the igHé¥ional curve, counted twice, which is of order
(cf. Rlein, GéaMath. Abh., Bd. 1, 1921, pp. 91, 126, 147, efc.
Also Hudsdn) Kummer's Quartic Sﬂﬁ‘" e, 1903, p. _6.1: etc.). d of
The thepry is capable of generalisation. By Lie's methoh 2
transfargiation, the tangent lines of a surface (), in space of three

g hi her surface
mensions, correspond to the spheres toaching anot :
L8> reni b it ] rrespond to the spheres
{59 The tangents at a point, M, of (8), co Pt M describes an

todching (87) at a point M’. When the pomnt - ; :
1 Hexior%al( cu)rve of (E’), the corresponding point M descrlﬁhes;.él?e
of carvature of ( 8. (Lie, Math. dnnal. ¥, 1871, pp. 145 g the
Ez. In the correspondence between a Kummer surfac% an v
Weddle surface which has been obtained above (p'ull-? ) (]:;J(:.rre- '
that the inflexional directions at any point of Blthel: s _aﬁ{m ly-
spond to conjugate directions on the other (cf. the writer tshat o cf-re-
Periodiy Functions, 1907, p. 127). In ﬂlpa.rtlcu]_al‘, shew 2 ’of e
sponding to one of the six princip inflexional carv
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Kummer surface, there is a curve upon the Weddle surface which
is of order 7, being the interscction of two cubic cones touching
along a generator (loe. cit., p. 822. Also Humbert, Jowrn. Eeole
Polytechn., vxiv, 1804, p. 123)

The rationality of the Quadratic Complex, and of the
Quadratic Congrizence. We pass now tovarions theorems, mainly
of Jine geometry, which seem called for by a comparison of some of
the results which have been given in this Volume. )

The representation, in space of five dunensions, of a quadmti}
complex of lines of threefold space, is by the (20 %) locus which'is
common to two quadrics of this fivefold space. This lm‘.{ls"iﬁ, in
fact, obtainable by cousidering, in a threefold space, $he cabic
surfaces which can be drawn through a certain quinticséyive. Tor,
consider, in space of five dimensions, any two quadiies of gencral
character. Let U be any point common to ’~bbfh. The lines,
through U, lyiug on both quadrics, lie on thasoid intersection of
the tangent primes at U, and, thercfore, oy 'two conical sheets.
We can thus dr?ﬁ; foy, lines through T Wing on both quadries.
Tet V be é?’ﬁi*wpmﬁguol?”(fﬂ‘ iBi¥tselings. "The line lics on the
tangent primes of hoth quadiics at 3 ¥as well as at U, Denote
the fangent primes of the first quadric at U and V) vespectively,
by =0, y=0; and the tangeyd primes of the sccond quadric, at
these two points respectivelysby 2=0, ¢=0; also, let U, V,
beside the zero coordinatessa, y, z, £, have the respective coordi-
nates x=1, v=0 and 430, v=1. Then the equations of the

two quadries will be,or;es})e(:tively,
¢ Yo + vy =0, ¥+ uz 4+ vt =0,

where ¢, ¥ are hdmogeneous quadratic polynomials in @, g, 3, &
These equation$dead to w (xt — yz) =y — 2, v (0t — yz) = ¢z — Y.
Hence, m geims of parameters £, », £, 7, if &, ¥ denote the same
polynopiials’in these that ¢, 4 arc in a, 3, =, 2, the coordipates,
@, Yy ;:Q\"u, 7, of any point of the %% Jocus common to the two
qqatil.}-ics, are in the ratios of

EET ), (Er =), E(Er =9, 7 (7 — 1), Wy — Dor, DY VE.

Regarding £, 9, £, 7 as coordinates in a threcfold space, cach of
these six functions, cquated to zero, represents a cubic surface.
Moreover, the quintic curve which is the intersection, other than
the line 4 =10, r =0, of the guadric surface &r —7{=0 with the
cubic surface ¥y — ®r=0, is the same as the quintic curve which
15 the intersection, ether than the line =0, =0, of this quadric;
Er — 5t =10, with the cubic surface Pr—TPE=0, The two cubic
surfaces have in coramon, beside this quintic curve, the quartic
curve of intersection of the two quadrie surfaces & =0, ¥ = 0.
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The quintic curve, commen to a quadric surface and a eubic surface
having a line In common, meets an arbitrary plane drawn through
this linc, in lhe two peints common to the residual intersections of
this plane with the two surfaces—which abe, a linc and a conic.
Thus the quintic curve meets the common line of the two surfaces
in three points. It, therefore, meets every generator of the quadric
surface, of one system, in three points, and the other generators each
in two points, and its genus, p, s given hy p=(3-1)(2-1), =%
{(see, for example, Proc. Lond. Math. Soc., x1, 1912, p. 286).
Converscly, for a surface, of order », to contain the quintic cufve
of genus p, the number of linear conditions, for the coeflicients, in
the equation of this surface, when n is large enough, is Sn—p'+ 1.
Forn=58 and p =2, this is 14. This gives 20 — 14, or{six, as the
number of lincarly independent cubic surfaces containiug the curve.
The ratios of the pelynomials expressing the equiations of thesc
surfaces can be used as coordinates in a space ofive”dimensions.
Interpreted in the original space of five dimchsions, the process
1s the simple one of projecting the c}L‘i&b{@%ﬁﬁﬁJQﬁ%%‘}&@&ﬁﬁﬁ,?f
planes passing through a line of the 105‘1’15,. given above by
rT=Yy=a= t'="05

upon an arbitrary threcfold spaceysay 1. Such a plane is deter-
mined by one point of the locgsy snd meets I1 in a point. Con-
versely, such a plane, determined by any point of II, meets each of
the given quadrics in anoth@x line, beside the common line of these
through which the planeisdrawn; the intersection of tl_lese remdugl
lines is a point of thé locus, corresponding to the point taken in,
Il An arbitrary prime of the fivefold space, say
«\‘I<I"+B,y+Cz+Dt+Pu+Qv=0, _
meets the lgghs”in a quartic surface; this 1 projected from the
line @ = g/ =eid= t — 0 by the line-cone given by _ )
«4»’0(&?&%2) + ...+ Dt (wt—yz) + P (yoy — 0 + Qlgz —¥2) =0,
whichus*of the third order. . athandl,
. This rationalisation of the locus is given by Kleim, Gf:?— ;!faf b ons of the
-BY, referring tn Nocther (1869). By combining th?hewfmg
utus, we may evidently regard one of them a8 having
2 +ua’ +vy =0
. ine i fold space.
usaal for the relation connecting the qoorc}lnateslgf & h:e n::yﬂb.l;efe;resa%ed
The intorsection of two (eo 1) guadrics, nfo SII))M janes through a line
Joohe puinis of un (n—2)-fold, in @ similar w&}]*; 'g ’ neral when #=38).
common to the two quadries (the quadrics -:i:)t ( ;:‘__gg %f)cus of intersection
he agurogate of (linear) p-folds existing on ip® Lewn to be of dimension

- of two (27"1) quadrics, in n-fold spuce, oan he ihe number of sach p-folds

(p4+1)(n~2p=2). In particular, when n=2p+2 e of lines on the
8 2% in the mngt geni;m] case; for exalee,_;ht:e I111‘um
quartie surface so obtained in fourfeld space 3 8
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We pass now to the case of a Quadratic Congruence of lines,
defined as the aggregate of the lines common to a quadratic com-
plex and a linear complex. We suppose this to be represented, in
the space of five dimensions, by the surface which is the intersection
of the preceding o ® locus with & primc of this space. This surface,
being the intersection of two quadrics of a fourfold (planar) space,
is the same as that studied in Chap. vi. It was shewn to he repre-
sentable rationally by two parameters (p. 165, ahove). Any onc g
the sixteen lines, which were shewn to lie upon it, may be taketnto
be the line UV of the preceding discussion. Then the prime,sehase
intersection, with the w ¢ locus above, determmines the conduli@ice,
as it contains all the points representing the congruenee, and
therefore contains this line TV, will have an equation™of the form
Az + By +Cx+ Dt =0. Now, the intersection of {ay’planc, i a
threefold space, with a cubie surface passing dhveugh a quintic
curve, is a eubic curve passing through five fixgdvpoints. Thus we
see that the line coordinates of a line of gghadratic cougruence,
in ’chreefqld space, are, pro -If.’tiigflll?‘l to .ijhogcncous cubie PUI}.-_
nomials, in ¥Brge“chordmat s, which\&tated o zero, rcpresent
plane cubic curves passing through five given points. This has been
verified in several cascs previouslylexamined (pp. 187, 141, 165).
Conversely, take five arbitra wpoints in a plane, and consider
what are the relations conneching the polynomials which, cquated
to zero, represent cubic curves through these five points. If we
take six such polynomials,'as there are only five linearly indepen-
dent cubic curves thyg’z}h the five points, these six polynomials
are connected by a9dheir relation. Further, the five ratios of these
polynomials, being dependent upon the two ratios of the coordi-
nates in the plane, must be connected by two other algebraic
relations, '[haf“these may be regarded as avising from two quad-
ratic equations connecting the six polynomials, can be made clear
by conﬁgﬁng six particular polynomials, which ave conmcected hy
two gliadratic relations; for any other six polynomials are expres-
sibledinearly in terms of these, '

A
\Nwo ways of obtaining the necessary relations have presanted themselves in
foregoing wark. If, referred to three of the five points, the conic containing
these five points be 8=0, and the line joining the other two points be P=Y,
where S==n(+ (£-+§n, and P=af+by-pel, then six cubic polynumials which
vanish at the five points are z, y, =, o, ¥, &', given by
&=E8, y=o¥, 2={8, F=(y-r)n{P, ¥ =(r—p)(EP, ¥ ={p—q) fnP,
in which p, g, » are quite arbitrary constants. These are connected by the
relations
@' +yy + o2 =0, pra’ +qyy +rad =0,
—az—by—ex 4 (=) F{r—p) 7ty +{p=~q) 71 =0
Or again, if, referred to three of the points, the other two points be (1,1,1)
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and (1, b, ¢), then, also with three arbitrary constants, p, g, 7, six cubie poly-

nomials vanishing at the five points are given by

a=(ne— ) (¢~ £) (- 1)y y=a~ L) (E—n) (1), 3={Eb—na)(p—O{~£)
d=lg—r) ((a—Ee) (Bb—na) (p ), ¥ =(—p) (E-na) (e N-&, -

='={p~q) (10— (b) ({a—&c) (E—n)-
These are contected by the three equations
(b—e)[wo+(g- )" T+ (e=@)[by+(r—p) Ty 1+ ~8) [er+(p—9)71#]=0s
& -y + 22’ =0, pax+qyy e =0

Caporali’s theorem, given below (p. 240), also deals with the
representation of a quadratic congruence. : ' (\)

The generation of a quadric in fivefold space. The
tetrahedral complex in threefeld space. Let a, By, 0 be
four planes, in fivefold space, meeting in pairs in six peiats; {8, v)s
(o, @), (25 B), (, &), (8,8), {v,8). These points we_denote, respec-
tively, by X, ¥, Z, X, ¥',Z’; and_we denote cogrdinates relative
to these points by 2,9, % @, y,%. 1t is casy to S8 that the general
quadric containing these four planes has ant %uatmn of the form
dxa’ + Byy + Cxz = 0; and that the quagpid Eﬁréﬂ?ﬂﬁﬁ%ﬁﬂi@f{
the condition of containing a given ffthvplane, which mcets &
of @, 8,v,8 in a point. Let the poits of the planc X'¥Y'Z be
related to the lines of the plane X¥Z, so that the point

X’ T,qfr.;;Y’ 4+ nZ’,

namely the point of coordifiates (0,0, 0, 1, m, w), corresponds to the
line Alx + Bmy + Cnz =0y & =0, ¥ =0,2=0 for all values of
L m, n. Then the 4dric is the Jocus of the plane joining any
point of the plal1ef§"1”Z’ io the correspondmg line of the plane
Xvz. A

For, the equafion of the quadric,
X', ¥, Z', will'not contain the squares of th
quadric \c@ptains the plane a, or YZX', given by ¥ ot such
2 = 0, fie*equation will not contain terms 1n ¥z Zy, & ziia '(]Jr § the
termsare not reduced to zero by y=7= r= 0. Sm‘]. oYs o
_cqiation will not contain terms in =z, y'% Y or te]‘ﬁ};’]’%‘?y’ii:l:
(&% Lastly, as the quadric contains the plane 3, or Xt : I,:g .

by =0, =0, =0, the equation will not contain terms i %%,

Z#'y 2y, The equation is, theretore, of the form

Awa’ + Byy + Cex =0,

obviously containing the

containing the points XY, Z
the-g coordinates. As the
Y= 0, =0,

any quadric of this form, conversely,

planes 5 Y, O : int, is, it 1

Agaﬁ,i gla.ne meeting each of o, B> 8 I_nha Pmﬂ;ismc’.flttli
easily seen, a planc given by three ponts Ly b?m'.{‘he eneral
forms &’ X’ + 8Z — c¥, §Y +eX —aZ,dZ +a¥ — & &
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point of this plane has coordinates of the forms

- gc—rb, ra —pc, pb—qa, pa’, g, e’
and this point lies on the quadric Awa’ + Byy' + Cuzx' =0, for all
values of p, g, 7, if, and only if, da"=B¥ =Cr'. Thus, a, b, ¢, d
being arbitrary, the quadric contains the o ? plancs of which one
is defined by three points, in a, 3, v, respectively, with symbols

A7dX 4 bZ —cY, BdY ' +cX —aZ, CdZ’ +aY — X

When once of these plancs is given, the ratios of 4, B, .Clare
thereby determined. - ¢ \H

Finally, the genera] point of the planc joining the poﬁl\t (0,0,0,
lymyn) o the line in &' =g =2'=0 given by Al + Baty+ Cnz =10,
has coordinates, for variable values of p, g, 7, givepsby

2(0,0,0,4, m, n) 4+ g (= Cn, 0, 44,0,0,0) + r (=-Bui; 41,0,0,0, 0);
for instance, & = — ¢Cn — rBm, 2’ =p!l. Thus
Azx’ + Byy' + Cax’ 207
and this plmmalidbmltheaqylm}'g'énvhaj;e\pe’r I, m, » may he.

Now consider the four planes ¥'€'X, Z’X'Y, X'Y'Z, XYZ,
denoting them, respectively, by a3 8", v, &. Each of these meets
thrce of the four planes «, 8,48 in a line; for instance, 8’ con-
tains the points (3, ), (v, akte, 8). Thus these planes lie on the
quadrie, being planes of the“other system from a, 3, ¢, 8. With
these they may be said #G\constitute a double four of planes of the
quadric, When two‘plhnes meet in a linc, a general prime meets
the solid, which # defined by these two plancs, in 4 plane; and
the prime meets,i?he planes in two intersceting lines lying in this
plane. Thus an.arbitrary prime meets the plancs, of a double
four of planesyin eight lines of this fourfold space, forming a
system cofistituled by four lines and the four transversals of threes
of thes¢ four ; or say, in a double four of lines in this prime. Let
0 hee\iihy point of the quadric. The solid Oa, for esample,
obtained by joinig O to the points of the plane a, mects the

. (quadric in another plane beside o, of the opposite system from
¢ ) this, and meeting this in a line; this other planc passes through O,
and the line is the intersection of the plane a with the tangent
prime of the quadric at 0. By considering the solids Oa, O3, Oy,
08, we thus have four planes through 0, of the opposite system of
planes of the quadric from a, 3, v, 8, meeting these, respectively,

in lines. Thesc are planes of the point-cone in which the quadric

1s met by the tangent prime at O, of one system ; and they meet
any plane of this cone, of the other system, in four lines through

0. Similarly, four planes of the quadric, meeting the planes o, 5%

s & each in a line, pass through O, and mect any plane of the
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quadric through O, of the same system of planes as o, &, v, &, in
four lines, These two peneils of four lines, in two p]anes, of differ-
ent systems, through O, are related percils, :

For, we have remarked that the tangent prime of the guadric,
at 0, meets the double four of planes in a double four of lines in -
this prime. Also, it was proved (p. 144, above) that, if a double
four of lines, in a fourfold space, be joined to a point, 0, of that
space, so taken that the eight joining planes belong to a quadric,
point-cone of vertex O, then the two sets of four joining plants;
regarded as belonging to the two systems of planes of the goue,
are related. Thus the result stated is obvious: It is the represén-
tative, in the fivefold space, of the fact that,in a threefold.space,
the plancs, joining an arbitrary line to fowr points, age~velated to
the range, on the line, of the four points in which, theMine meets
the plaves eontaining the threes of the four points(Vol. 1, p. 30).

Denote the quadric hy O suppose that its points represent the
lines of a threefold space, Consider a tetrahedral complex of lines
of this threefold space. The lnes. of this'¢ lex will be repre-
sented, in the fivefold space, hy the 'poh\'{[. “Con %‘1‘}‘{‘6%-&‘1&. 1c
) and to another quadrie, say 07, ‘Nheh the equation connecting
the coordinakes of a line, in the thedefold space, is written

0+ mmisFnn’ =0,

point coovdinates heing relative to the four points by which the
tetraliedral complex is défined, then the equation for ‘the lines of
the tetrahedral complex\is'of the form alZ’ -+ b’ +enn’ =0. Thus
it appears, from cémparison of the equations, tha!t a !:etrahedr:al
complex is represegn\md by two quadrics, £t and 0, \_arhl'ch have in
comnton four plades of 3, of the same system; this 13 evident,
otherwise, fuomi“the fact that, in the threefold space, every line
through af#one of the four fundarmental points 1s a line of the
tEtl‘aht‘(géﬂ{complex. In the fivefold space, the four planes of one
svstenfebmmon to {2 and ', imply four other comion planes, o£
thesather system, making, with the first four, a double four o

' the threefold space, every line in one

L Jaies i correspondingly, in °
8f"the four planes which are fundamental for the tetrahedral com

plex, helongs to this complex.

We can, however, interpret,
of a line of the tctrahedral comp
line to the four fundamental p(})int: fo
to a definite range, Taking the two qua R s
space, with the f'(iu‘ common planes a, 35 7 3 metﬂtmg mep:"g:eg:
SIX points, consider any other plane of 5 of t e_samThé four
as o, |83 v, 3' This P]a-ne:! say £y meets Y in & (301'].1(3.8 meet the
poiuts, say 4, B, C, Dy in which the planes a, By s

in the fivefold spz;ce, the Propii'lt)sx
lex., that the planes joimng Lt
. rm & pemla)il which is related

drics, &, &, in fivefold
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lane ¢, lie on this conic. Let @ be any point of this conic;: it
ies on hoth £ and {'. Planes of {2 can be drawn through 0, of
the system other than that of a, 3, v, 8, to meet these planes cach
in a line; these planes wmect ¢ in lines. Four lines so obtained
are 04, OB, OC, 0D ; and the pencil formed by these is related to
the range, on the conic, of the four points 4, B, €, D. If another
plane of £, say ¢, also of the same systen as a, 8, v, 8, be drawn
through O, meeting a, 8, «, &, respectively in 4, I, (", D', wg
obtain another pencil 04', OF, OC’, OD', likewise lying in lhe
four planes of & drawn through O to meet a, 8, v, d in lines\s
the plancs of Q, of the two systems, drawn from 0, are planesiof
the quadric point-cone in which {2 is mect by the tangent/prime
at O, the two pencils O (4, ..., D) and 0 (4, ..., D')dwe related.
Thus on the two conics, on ', in which this quadpie’ is mct by
the two planes, ¢ and ¢, drawn through O, the twozanges (4, ..., D)
and (4, ..., D), are related. A plane of Q\sich as ¢ might,
however, have been drawn equally throngh any point, other than G,

of the conig i . Thus we Wrthe result: Let two
guadrics, E% anddﬁ}%ﬁq]]%%jfgﬂ %ﬁ,\ce, havlggfnur plancs of the same
system in common, and any plane of Qpo6f this system, be drawn,
meeting £’ in a conic; consider ¢he four points of this conie,
lying on the four plancs commen to £ and (', regarded as be-
longing to the range of the gidints of this conic. Let a sccond
plane of Q of the same system be drawn, and consider the four
peints of the conie, in whieh ‘this plane mects (¥, which are similarly
obtained from the four tommon planes. Theu, the range of this
last four points is related to the range of the first four. Moreover,
by what is said ghove, if we take the other four planes, of the
opposite systengy¢ommon to 0 and O, say o, &, 4, &, and a
variable p]ane‘&}f {1, of this system, mcetin‘g ¥’ in a conie, then
the plancs @'y 8, &, & mcet this variable plane in four points, -
of the range of points of this conic on (¥, likewise related to the
range‘é]f%oints 4, B, C, D, above,

The singular points and planes of a Quadratic Con-
.gr}lence. Caporali’s theorem. It has been remarked that a
ghadratic congrucnce, consisting of the lines common to a quadratic
complex and a linear complex of lines, in threefold space, is repre-
sented in fivefold space by the surface which is the intersection of
two quadrics and a fourfold space. Any one of the sixteen lines,
known to lic on this surface (p. 166 above), represents a plane pencil
of lines of the threefold space of the quadratic congruence. In
gel}c:ra], only two lines of the congruence pass through an arbitrary
point of this threefold space; but, it appears from the present
pOlll]t of view, there are sixtcen points through each of which pass
an infinity of lines, forming a flat penci! in a plane through this
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?uint. Each of th(i: sixteen lines of the quartic surface, in the four-
old space, meets five others; thus, in the threefold space, each of
the singular pencils of lines-of the gquadratic congruence has a ray
in common with five others of these pencils; name]y, the singular
lane of any one of the pencils contains five other singular points,
of which the corresponding planes, passing respectively through
these points, all pass through the centre of the first pencil. Thus,
there are six singular points in any singular plane, and six singular
planes through any singular point. It was seen, moreover (p. 171,
above), that the sixteen lines of the quartic surface, in the fourfoldy,
space, give rise to twenty double-fours of lines, each consistingof
four non-intersecting lines, with four others, transversal \t0-the
threes of these. The first four lines of such a double-four&ép 1
four peneils of lines, in the threefold space; each pefiei has a
_centre, and Hes in a plane through this centre. The second four
lines of the double-four give rise, similarly, to fgui\pencils, in the
threefold space, of which each has rays throygh three of the four
preceding centres, these rays lying in the resp ivqeiﬁlﬁqes-thr?ugh
these centres. The double-four of lines,‘on’ ﬁa e Sris of
the fourfold space, thus gives rise, in the threefold space, to a pair
of mutually inscribed Moebius tetrads (Vol. 1, p. 61), the rays
through one of the points of onejtetrad being m a plane con-
taining three points of the other'teétrad. From the singular points
and planes of the congruence, corresponding fo the double-fours of
lines for the quartic surfacgit fourfold space, twenty such pairs of
Moebius tetrads can, bé_formed. No two of these pairs have a
common tetrad, as welmay see from the notation previously given
for the double-fours(p. 171, above). . o d
Let us represeftsthe two quadrics, and the prime, in the ﬁv’efoo
space, which define the quadratic congruence, by Q=90 O =oi'
II = 0, respectively, 0 = 0 being the representative of ihe hnesth
the thregtold space. We may replace {1, for the definition of te
cangruence, by a quadric, ", passing through the common plom .;:
of (<aitd T1: and this may, in fact, be so chosen that the poles ©
Aljnregard to O and Q” are the same point. For, let (wnf,_ i ::;2
he/the po]e of TI in regard to O, let 11, be the result of su -
tuting ,, ..., 1, for @, ..., @, in 1L, and let I denote’the operator
g2 rers ®o ren take. "= QT ~ [1D,
x0ox + ... + w,5/0w. Then we may ia 40" The
ow consider the common self-polar bexad of O ancon " ences
six principal primes of the hexad represent: 51X Linear n.grute or
of lines in the threefold space, of which every two are co fJRf:ebiuB
apolar; and of these Il is one. Thus the twenty Pmsfothe figure
tetrads obtained above are clearly seen fo P"']i otetmd s %"ith
previously discussed (p. 188, above), containing e“% {nscrlbedf
sets of four teirads of which every two are mutua. y

piid
B.G.1v,



249 Chapter VII

The quartic surface, given by =0, ' =0, IT=0, has also
(p. 171, ahove) ten sets of conics. Thus we may infer the exist-
ence, in the threefold space, of ten sets of quadric surfaces, of which
the generators are lines of the qunadratic congruence. And this
may be generalised by considering curves of higher order on the
guartic surface.

From the present point of view we may also prove easily that
the lines of a quadratic congruence, in threefold space, belong, to\
forty tetrakedral complexes {Caporali, Memorie.. Lincei (8°), Iy
1878, p. 756). let =0, Q' =0 be two guadrics, and TI =0 be
a prime, in fivefold space; we shew that, m forty ways, @\kntar
function of the six coordinates, say 4, can be chosen, 10, tHat the
quadrie Q' + 401 =0 contains four planes of = 0,6f the same
system ; this is sufficient, after what has been said’ above. To
prove this, take one of the double-fours of ligésyof the surface
=0, (=0, II =0; through each linc, of on¢ of the fours of
this, draw the definite plane of Q, belongingyte the first system of
planes of Ilwwfg}%g.aﬂﬂgﬂrpjlwsg]ﬂqet, in, pairs, in six points. Let
the coefficients, in the linedr filhction, be chosen so that the
quadric {}" = 0, where "= '+ 4T, eontains these six points of
intersection. "Then this quadric, QZ%50, wholly contains these four
planes. For, any one of these planes contains, beside the threc
points of 3" in which this plape 1s met by the other three planes,
also the line, belonging te the double-four, through which the
plane is drawn; and this\line, lying on 0'=0, I =0, lies on
2" =0. As the intgrséchion of a plane with a quadric is a conic,
proper or degeneratc,\l}} follows, if we assume that the three points
in which this plang js met by the other three planes do not lie in
line, that this plane lies on (" = 0; and the same argument applies
to the otheg.bhree planes. This quadric also contains the planes
of £ of thelsécond kind, drawn through the four complementary
lines ofthe double-four., Next, beginning again with the four
lines ef\the double-four through which the four planes of the first
system of {} were drawn, we may draw throngh these lines the four
~plantes of the second system of ). Thence we similarly derive a
quadrie, O, =10, containing four, and, therefore, a double-four of
planes of 0. As there are twenty double-fours of lines on the
quadric surface =0, 3 =0, 11 =0, we can dcrive, in this way,
.20, or forty, quadrics, each having common with @ a double-
four of planes. Conversely, let > be any quadric containing four
planes of the same system of ©. "There are then four planes of the
Other system of (1, each meeting three of the first four in lincs,
which also lie on . Any prime, T, as has been remarked,
meets two planes of Q which meet in a line, in two lines which
intersect. ‘The prime II thus meets the common double-four of
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planes of @ and I in a double-four of lines. Thus it appears
that the only quadrics containing a double-four of planes of
which can be found are those constructed as were 027 and ,; so
that forty is the total number of such quadrics.

A particular case of the thecrem would be that in which the
quadratic congruence of lines consists of the lines of a quadratic
complex which meet a given line. Then the prime II touches the
quadric (2. It may be seen that the guartic surface given by
2, 0, and T], is not essentially modified.

. N
Ez. 1. The points of a line, in space of three dimensions, are )

represented, in the fivefold space, by the planes, of the first kind,
of the quadric {2, which pass through a point of this, The.sgl)]}ines
meet any fixed plane, of the first kind, of @, in poinisdyibg on
a line; these points form a range related to that of thelpoints of
the original linc in the threefold space. Q)

Consider, in particular, the range, in the threefold space, of
points given hy n=¢=0, E=ar, as a Vari:es.\\ ese points are
represented by plancs through the poipd, (Taf} Qﬂlﬂ;rﬁ?gl iihe
quadric a* + 4 + 2% = #* + ©* + % in the &mfolﬁ space, the planes
being given by RO

w=m, v=gycos§—xzsin fow'=ysmt +xcos 8,
where tan [# = @, Putting Ny
p=my+ e, gf=ﬂ'1'_3n "':'=’32+m’13 k=l —mtn— 1,

these planes meet the plandof Q which is given by.
w= Tt gy + s W b+ gy o+, =k Y

in the range of pointsywhose coordinates, &, ¥, 5, 4, 0, ¥, are the six

expressed by &0

& (9’\“_}0’ -k 9’3 B B—(r,— kyp,r— &, 1)y

so that, forlcks &= ag —r, W=k —p )

Ea, ;Jf 1?\?&?%?{,) ]ines%n tl';reefold spaf:::ﬂ,, which de not inter-

sect, aby ‘point, P, detcrmines another peint, P, on .fﬁle traz;-;

versil\ffom P to the lines, harmonically conjugate to Pwi lrlgs <t
fo ¥ficse. Thus any line, not meeting the first two, on whic.

mbves, determines a fourth line as the l.oc?]i Oﬁ Pt:;:o]dS:l;:cethiith;h:
representation of four lines so related, in 1}'if1g :;?l the fundamental

armonic range of four points of & conic,
quadric 03, . i
Ez. 3. Let the lines of a quadr%tlc congr}leng;ﬂ:f;t‘?:;eio}i
space, be given by H +mm +unw =1 ar —’I_be the two roots
AV L 474 Bor +Bm+ Cn' +C'n="0. Letd, f ¢
of the quadratic equation

_y . —1 ' + - CC" =05
@+ ¢) 44 +(b+¢)" BB +(c+$) o s

Q"
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put e=(a+ 6y 44, B =(b+ 6) BB, ete,, and &’ = (a+ )1 4L,
etc., so that e+B8+v=0, &'+ 8 + " =0. Then, wilth A= A"},
Al = AV, ete., we have

e = pp'|BB = vy’ AN Fut+p o4y =0
Further, with L= 4~ (a + ), M = B~'m (b + 8), ete., we have
LN+ My + Nv' =0, LN efa’ + Mp'B/8' + No'y/y' =0,
el + N4+ BM+p' + 9N+ =0,
whereby the lines of a quadratie congruence are reduced to thé \

lines of a tetrahedral complex which meet a line {cf. also, Bx, av,
p- 142, above). ( 2\ Y

Ex. 4. Prove that any linear transformation of the ¢@ordinates
in the space of {ive dimensions which leaves the quadric’:gr tnaltered,
leads, in the space of three dimensions, to a lincar transformation
(homography) or to a correlativity. And convéesely. Find the
geometrical transformations in fivefold spage\corresponding, re-
spectively, & “tHed FENUIREY 958 rmations iy threefold space:
(1) Harmonic inversion with a fixed H@'i'l§ and a fixed plane;
(2) Harmonic inversion with two fixed lings; (3) Polarity in regard
to a quadrie surface; (4) Polarity inwtegard to a focal system {(or
linear complex). N\

In particular shew that the, transformation replacing the line
coordinates I, m, n, &, m’, n'“réspéctively by m’ +a', n' + 8, I+,
m+n—L n+l—m, I +m R leads to reciprocation in regard to
the quadric surface | O '

g S Qe+ Qe+ Dy + 487 = 0.

X/

(N
"\Q«



APPENDIX
NOTES AND EXAMPIES

p. 15, Add to Ex. 3, These are sometimes called the circles of anti-
similitude. N

Add to Ex. 4. At a point common to two circles we have a pencil, of paitg
of rays in involirtion, consisting of (1) the tangents of the two cireles at'the
puint’; (2) the radical axis of the two circles and the tangent line {at-the
point, of the circle of similitude; {3} the lines from the point to thc;.ﬁmltlng
points {whieh pass through the Abselute points of the plane), The donble .
rays of the involution are the lines from the point to the centresof Bimilitude.
The circle of similitude is obtained hy projection (from U)ofthe section of
the quadric & made by the plane, throngh the line Z, }v}nf:)l,ls the harmeonie
conjugate of the plane IT7 in regard to the ewo planes\jeluing 7 to the vertices
of the quadric cones containing the sections e, 8. \

p 16, Ex. 6. CE J. . Grace, Proo. Camb., EHih, .l,ﬂzﬁjgegz?)bpgﬁlri

. 18, Prove also that, if A, B, ¢, 4', B'a@be six points in a plane, buc

thit the four circles determined b;; the triade: (A J B, ), {4, B, &) (B, C”.Aai‘
{0, A’, ') have a common orthogenal ecircleythen the four circles determine
by the triads (.4', 17, (), {4, B, O), (B'RG ), (¢, 4, B) have also & common
orthoganal cirele. : ™ : .

P 87. For further cennected q'éghits, see Segre, Bneykl. Math. Wiss., 1,
C. 7, p. 807, footnotes F21, 122 and p. 962, footnote 600,

) - be inscribed in
Pp. 23 and 147 (Ex. 19), &g theorem that if two tetrahedza i
a rational cubic ct(n've of prdinary space, the eight faces are mzlatm ﬁl;rhar;?
of another cubic cur {is“given by Von Staudt, Geomeirie ds?]" a‘f’lain this,
m, 1860, p. 378. By& much more general result is true. ~9 S7EIEC S 0
let s agree to dedote a (linear) space of « dimensions lzi 7], oints, the
spaces, Iying théréin, of r—1 dimensions, each determin gh" imensiﬂﬂs'
Primes of this .si)ace. By the erder of an algebraic eon stract i? the nember of
existing in |#]y regarded as an aggregate of points, 18 mee}n e reetonS.
points of {£yhich lic on a general (Linear) space, [#=A]; Bfr oints, the order
When 2D and the aggregate consists of a finite number o 01;' int mes of the
is the'\ulimber of these. Dually, an algebraic aggregaﬁer of  rimes of the
Spatftl,"fr], of dimension k, has a c/gss, this being thaflltlillm se ce PWhen k=0,
. dtBregate which pass through / general points o ?a&PEOf 8 plane curve,
. '8¢ elass is the number of primes, For egmple: the ch Je=1, ig the number
Tegarded as the aggregate of ite tangent lines, for W}Elt'.:h . lame: or, the vlass
of the tangents which pass throagh a general point of the I::lrfac:& in ordinary
of the sggregate of the tangent planes of an algebriio linw which contsin
“8pace, for which k=2, is the number of these tangent P ioh
two general points of the space. . .o [#], of whi
Ng“' S'JPPESB that, on tl?:crational curve of orderﬂr,tlﬁle.:epa;;ie Eaijsbliﬂhed &
the points are given rationally by the ps ran:lete;me,l there are sets of m
so-called involution co*, of sete of m P?mtsi, “ihe v{fueé of § which eatisfy
points, of which the points of a set are given Y
an equation of the form : -1 =0,
Ag{erg @ + 6™ 1+ +co)+---+7\k(ak9m+b*€m ot )
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the values of the eoefficients Xy, ..., Ay varying from set to set; such an
involution ean then he defined by taking k-1 sets, each of s points of the
curve, given severally by the vanishing of the polynomials here multiplied by
Nos ---» Ap, i which the coefficients ay, by, ..., & are given; all the sets of
the invelution are obtained by variation of Ay, ..., A, and one such set can
be found fo contain k general points. It is supposed that k<m—1, and m>r.

Any r pointzs, taken from the m points of one set of the Inmvolution,
detormine then a prime, unless their positions be in some way particular.
From any set of the inveolution, if (p, ¢) be used to denote the hinomial
eoefficient » ljg! {p—¢)! when pZ>q, we can thus determine {(m, #) primes, and ¢
a8 Ay, +-ey Az vaTy, we thus have co¥sets of (m, +) primes. When k< r £ )
we thus have in all an aggregate, of dimmension &, of primes. Bui when
rgkgm—1, any r points of general position on the curve, and thos Wy
prirne whatever, determine ¢ ¥~ sets of the involution, and thus the aggregate
sought consists of all primes; there are however, in this case, special sets of

¢ points not giving independent conditious, forming an aggregite of primes
of dimension which is proved to be 2r - 2—k (and is thos nenfexistent when
k>2r—2); it is found that A< m—1 when m > %r, bub~Ja may be m—1
when m < 2, 4

When k<r<m, the class of the agyregute of primes is\ah—k, m—r); bul, in
the second case, when r<k<m—1, the elass of the aggregate of special primes
referred to is (o Aflrdafns LOrg.in LV . .

To illustrate the great generality of this result) vonsider an involution of
pairs of points on a covic, determined by v, Grbitrary pairs; then #=32,
m=32, k=1; the joins of the points of a pair,"0f the involution are then an
aggregate of lines of dimension 1, and the'elass of this aggregate is (1, 0),
or 1; thus one of the lines passes threfigh a general point of the plane, and
the lines form a peneil. As anotherleximyple, consider, on u rational cabic
enrve in ordinary space, the a.ggrégatb of sets of four points based on two
such sets, so that »=3, m=4,&%=1, Thus the faces of the x! tetrahedra,
given by the various sets of four‘points belonging to the involution, form an
aggregate of planes of dimendsion 1, and of class (3, 1), or 3, namely constitule
a cubic developable, T hi§\i§Von Standt's result. As a third example, also on
a rational cubic curve tn, ordinary space, eonsider an involution of sets of four
points, based on thljee"tetrahedra instribed in the curve, so that »=3, m=4,
k=2; the faces of e various tetrahedra form an uggregate 2, of class
{2, 1}, or 2, namely these faces all touch a quadric surface; the langential
equation of fuh.ia 18 given, p. 29, above, Ex, 2. But now consider on a conic,
the involukidn o ¢ of sets of three poiuts based on three inscribed triangles of
the coniefthen r=2, m=38, k=2, and r=Fk=m—1. ln this case any line of
the plaue determines two points of the conig, and so determines a set of three
poinigof the involution, provided the two points are such as to determine the

Appropriate ratios of kg, Ay, Az. 1f the three triangles on which the involution
ig_based are given by the vanishing of the cubics #(8), ®(6), w{8), this
determination fails when the two assigned points of the vonic are given by
values §=46;, 8=4, for which

£(81) F(8) =2 (81)]% (62)="¥ (81)/¥ (62)-
In agcordance with the theorem enunciated , since 2k—2 —y=0, there is only
a finite number of such special pairs, and the number of chords joining these,
or (m—r+1, m—Fk—1), iz (2, 0), or 1, so that there is only one such chorid.
Geometrically, it is known that the sides of any two of the three originally
glven triangles, inscribed in the given cotie, touch another conic; and the
sides of the triangles formed by the sets of triads given respectively by

ME(O+A T ()0, M F(O)+AL (8)=0, N F(8)+2 % (8)=0,
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touch these enuics respectively; in general there is a cireumscribed triangle
of each of these conies having s vertex at an arbitrary point =6, ; but, if 4,
be related to &) in the special way explained, the chord (8, 8;} tonches all
three conjes, We thus have the thoorem, that if three triangles be inseribed
in a conle, the three conies, each touching the sides of two of the triangles,
liave » common tangent. As a further example, suppose that on a rational
cubic curve of ordinsry space, we have pentads of points based on four given
pentads, o that »=38, #=3, m=05, and r=k<m—1. Then an arbitrary
plane, determining three points of the curve, gives a set of the involution .
when this plane iz gencral. Bul here, as 2r— 2—k=1, there are e ! planes of
a special character, determined by sets &, , &4, @; for which the three equatjens

Ao FE)+MB (6 Hh® (B) 4252 (8)=0,  i=1, 53

do not give unigue values of the ratios of Ay, Ay, Az, Ay; and, by the theorem
stated, these form an aggregate of elass (m—r+1, m—k—1), thatiis (3, 1),
or 3, namely a cubic developable; every plane of this is a face’alorte of the
involution of pentads. But, as a last example, if we congideran involution
of pentads based on three such pentads, so that r=3; #=2, m=4§, wherem
k<r<m, their faces touch a surface of class (m—k,gn>8), or (3, 2), or 8;
and, as hefore, the common tangent planes of the cubie, gmrfaces g0 determined
by every three of four such pentads form a cubic dq?elopa.bl& 1997, . 882
See a paper by F. P. White, Proe. Camd. % . AERMT, 1 . 882
and, for ; IFI'IJof f}f the general theorem emm‘é& ;aﬁmﬁgﬁ%ﬁﬁfﬁu,
1937, p. 183. The particular theorem that J:he_ three conics, touching the
sides of the pairs of three triangles insezibed in a comic, have a common
tangent, is given in Schriter’s editiam of Steiner’s fectures on Conics, 1867,
p. 2455 and by Ploquet, Etude glom. d. eyst. de sections coniques, 1372-
A very direct analytical proof«is possible: let the vertices of _tle }" raee
triangles be given by the vanighing of the three cubie polynomia 5& ( bé},
@{f), ¥ {d); consider the mt@;lal plane cubie curve for whick t};‘ﬁ coor lmiess
(& n, &) of a point are given hy EIF(9}=W"1‘ (A=¢1 (6). toe t}i'fangth;
inseribed in the origingl, conic, whose gides touch the conic toud u;g e
sides of the two triangled given hy £ (8)=0, @ (f)=0, are then g_*lien r}i,a.bl o
values of @ belongingte the intersections of the cubie curi-; tw& xtional
lines hy&+x, n =20 And similarly for the other two conics. D t; R
cnbic eurve had,obe double point; let the parametel‘s belongn(lg g’ l)l?n thé
and @y; the'line joining tﬁ"is double peint to the .velrtexf th firat conie,
(£, 7, {) plane, corresponds to one circumscribed friang f? t?] g ] conic.
bhaving, 'ga\éne side, the line joining the points 8, & of es D"‘ﬁcs A pre-
And this line is similarly a tangent of both the other deriv 1?1(';1 abc;ve) o
ciselyisimilar proof can be given of the theorem (Ex. 1% Ié;-un '\f an involu-
~the fnadric surface touching the faces of variable tetrahe B
€ _tion based on three tetrahedra, insoribed in 2 gnbie l:]pﬂce uartic, s has
thords of the curve as genr:i'ators; for a rational plane q
three double peints in general . . ve. there
But, 1101;\=c'it]ils’l:anding.),5 the generality of the mﬁreﬁ&ﬁiﬁsﬂf l;}(])e chords )
are still more general theorema. As, for example, '31 4o 8 linear complex
of a rational cubic curve in ordipary Space, which bef?;gg curve, into tangents
of lines in the space, project from an a:‘bltrar;r peint o o 1937’ p- 186).
of a conic (see the note referred to, Froc. ¢ P.8., xxinl P

’ i i for the rational curve of
I'here are of course many interesting theoremns .
order » in space of # dimensions. The two folluwing, quot.ed:by Segre,

he 1
Math, Wiss, C. 7 (1921), p. 896, may perhaps d i curve
(1)’ (Voronese.) 7 .2, » P3 be eight points of thtﬁ:agﬁ;ﬁlo artic curve
in [4), the faces of the tetrahedron whose vertices arethe p
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of the four pairs of opposite planes (123, 567), {284, 878), (745, 781), (456, 812),
intersect respectively the diagoual lines 48, 15, 26, 37,

{2) (Berzolari.) The tangent lines of the curve, fur any value of #, at the
741 vertices of a general inscribed simplex, meet the opposite primo faces of
the simplex in peints which, when 7 is even, lie on a prime, and, when » is
odd, determine another simplex whose prime faces coutain the vertices of the
original (unless these new vertices lie in a space of (» — 2) dimensions).

Alse we remark (see p, 64): If a space [r—2] be described containing r—2
points of the ratioual curve {¢*) of order » in space [r], the chords of this
curve which meet the Er—z have their cxtremities in au involution of pairs
of points on ¢"; and a [r— 2& ean be constructed containing »—2 given paints
of the ¢*, to meet two arbitrary chordz of the curve e, 2 AN

p. 82 There is an interesting theerem, sometimes called the Pejérsen-
Morley theorem, which may appropriately be enunciated, as an\additional
Example, 3: ™

If a, b, ¢ be three general non-intersectiug lines in ordiufgiPspace, and o
be the line meeting &, ¢ which is at right angles to bothglikewise 5 be the
line meeting both ¢ and « at right angles, and ¢ the ling\neeting both & and
b at right angles; snd If, then, p be the line meetingWdth « and & at right
angles, ¢ the line meeting both 4 and &' at righthavgles, and » the line
meeting both ¢ and & at right angles; then the théerem is that, among tle
Eanls;versals offiHe 1l Ry 1‘1%&33:5}5 P¥@tilere is{ohe which is at right angles

aii. £ >

Since two lines at right angles meet the Whsolute plane of the space in two
points which are conjugate in regard torthe Absolute conic » and conversely ;
and two triangles which are polars of%ote another in regard to a eonic are
in perspective, and conversely, thestheorem is one in regard to two trianples
4, B, Cand 4, #, ¢ in a plane ®hich are in perspective, lines i, 4, ¢ heing
drawn, outside the plane, fromddy,. B, ¢, and lines «, ¥, ¢ from ', &, ¢/, of
which a4’ meets 4, ¢ and so e\ In more symmetrical form this theorem is:
If the sides of a skaw hexaden’ in ordiuary space, taken in order, be a, ¥, ¢,
@, b, ¢; und these meetSaSplane in points A, B, 0, 4", B, (', respectively,
in such a way that thetriads 4, B, ?and 47, &, ¢ are in perspective, the
lines Ad', BF, CC¥/miveting in a point £, the sides A, B (" meeting in #,
the sides 04, (" 24’ @, and the sides AB, AR in E, with £, ¢, i in line;
and; it p, q, v be\ilie trausversals, respoctively, of the pairs of opposite sides
@ @ 5 b, ¥ e, € drawn from P, @, R; then oue of the transversals of p, g, #
passes th b the centre of porspective £,

For this\theorem see J. Petersen, Nouveng principe...droites, Bull d. Fde.
B. d. Bey ot d. fets. de Danemark, Copeuhague, 1808, p. 203, and F. Morley,
On: avonfigerstion of ten lines, Proc. Lond. Math. Soe » XXIX, 1838, p. G70.

Nerificatious will he found in Frith, Proc. Camb. Phil Soe. . xxx, 1954,
RD/ 192, 197, whers references are given, and in Jour. Lond. Math. Soc. s Xl
1936, p. 24. The reader may also compare Klein (1873), Ges. Abk., 1, p. 406;
and this following result for a rational cubic curve: If, throngh the six
vertices of a skew hexagon, whose sides in order are 4, W, e, a’, b, ¢, there be
drawn a rationsl cubie curve, meeting an arbitrary plane in P, §, R, then the
trausversals p, g, #, drawn from P, ¢, &, respectively, to the pairs of opposite
sides @, &'; B, 4} ¢, ¢ of the hexagon, have, as one of their transversals, &
chord of the cubic (the chord, namely, joining the pair of points, of the cubic
curve, which is commaon to the three involutions of pairs of points an the
carve determined respectively by the chords a6 b, 6 e )

P_‘etersveq applies his method {o obtain varicus results; one of thesze is: If
an involution of pairs of generators of the same system of a quadric surface be
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taken, and the common lperpendicu]ar of the two generators of 5 pair, the
lines of these perpendiculary form » ruled surface of order three, :

p 24 1t is also troe (as remarked by Mr P, Frazer, 1927) that, if we have
a rational quartic carve in space of four dimensions, and take afl possible
planes meeting the curve in three points, say all trisscant planes of the corve,
these planes meet a genersl threefold space’ 9, Iying in the fourfold space, in
the lines of a tetrahedral complex. The theorem of Heere given in the text
(Bend. Palermo, 11, 1888) is the particular case when the qmartic curve
degenerates into three skew lines and their common transversal. To see the,
general result, let the space © meet the gquartic curve in 4, B, O, D, an
recall that a tetrahedral complex, in the space 9, consists of lines withsthe
property that the planes joining any one of them te four fixed points (sueh 'as
4, B, €, Dy are a peneil with a eross ratio the same for all the lines\of the
complex; and remember, further, for a rutional quartic curve in space-6f four
d mensions, that the pencil of primes (threefold spaces) joinimg-a “variable
trisecant plane to fonr fixed points of the curve (sneh as 4,8,C, D) ha.v? a
eross ratio ithe same for all such trisecant planes; if then wé take the seetion
of the fourfold space by the space @, the enunciated result follows.

7. 89. As a further exercise prove, divectly and alsosby projection from
space of four dimensions, that two gencral circles, ,i%p.rdmary space, are both
cut at righl angles by a single sphere. - 2% )

pp. 36—40, (a) We have remarked that if 3’%@' %dbﬁﬁ“l’b’fm“.’?@w‘"‘
{or threefold) =, in space of four dimensiong,with regard to 2 quadric @ lying
In this space, then, ou projection from_anjdefinite point ¢ of 2, on to an
arbitrary prime 11, the section (2, =) beSdmes a sphere, in the space 1T, with
centre at the projection of . N . wd

If then, in the fourfold space, we'consider a plane @, which we may rega I
a8 Iying in every one of a pencil*ef primes, snd consider also the polar line J,
of =, in regard to @, this beingthe Jocus of the poles of the primes r.:otita.mmg
@, then, the projection from 0, of the conic section (@, =), is a circle; an
this lics on a series e} pf.dpheres, having their centres on a line, the pm_let.%.tltl)::
of I This line is thus*that drawn throngh the c(?rltl‘e of _th_e mrclehat ”%
angles to the plane Of the circle; we eall it the awis of the eircle. T he t:§neﬂ;
of the circle, we mag'prove, is the projection of the point Whgriht eolg of
meets the prime G/ =). Further, if S be any prime ,tth'“f-'h el gcts g’
the plane of the girele, in regard to the sphere into which (2, 2)'(11 rq_}n the
the projection Jof the point (2, £). Thiz we may see byh'}':]??‘ mj;nf' for
harmonie, katige on any line drawn, in .the prime X, Lhrnugh 'f.',-,gg of this
= ma}"}fx\onsidered 26 the intersection of 3 with the polar p

point. \ L .
O\M the axis of the i rele, obtained by projection of the 'ii!csﬁ'oghg:é :?; :h"z
~L%0_hoteworthy points, which we eall the anfipeints of the.ci hich the circle is
adtipoints in the ordinary sense of the pair of megﬁs 1 Wections of the two
Mot by any plane through its axis. They are in fact the };I‘?i]] o mtersections,
Points in which the line / meets . For, let § be ane 0 f 0 at ¢, containg
80 that the polar prime of §, which is the tangent prime o »

, : ical sheets of lines
the plane w; we have seen, in the text, that the twotc;’ll'li:n& at 0, the ether

lying on 0, one with vertex at ¢ Iying on the tangent pri i

¥ 3 n & ¢ONic
with vertex at @, lying on the t;,ngb_nt prime 2t }Q, havei.[‘ué Qcoﬁgr-lﬂ oo @
section; and the tangent prime at § contains the cmflrc;m {,ﬂ =), with the
Projects iuto a point, on the axis of the virele arising il

; el i tains the Absolute
Property that the cone joining this point to theﬁﬁgfﬂ%;:?nay also define the

Solic of the space I This justifies the designa herey containing
antipoints s ll?he limiting points of the cvaxal system of sp
the vircle,
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() If @y, @ be two planes, whose polar lines ate ¢ and 3, it can be shewn
that, if f meets @0 (in a point), then §, meets w;. In such case we speak of
@, @y as being conjugate plenes, in regard to £, and of 4, & as being
aongugate fines.

For, if #; meet @, say in II}, a prime [, &) is thus defined, containing =
and /; apd, as this prime contains @, its pole is on 45 while, as this prime
contains every point of 4, its pole lies on the polar primes of all points of 4,
and thus lies in ;. This shews that § meets oy, say in_H.. The points
H,, H, are thus the poles, respectively, of the primes [, ty] and [@,, §].

The prime [, , &), having its pole I on =, s thus conjugate, in regardy
to 0, to every prime containing @s. Thus, on projection, the sections (£, )
(9, ws) lead to two circles having the property that through each there/passes
a single sphere which is (orthogonal to every sphere throngh the other, and
iz thus) orthogonal to this other circle. \\

A particular case is when /4 lies entirely in the plane =;. Then there are
iwo primes throngh wy, defining @ by their intersection,, whigh arc both
conjugate to each of two primes through @ (which defing ‘gpby their inter-
gection). Thus also §; lies entirely in the plane @s. In this case we speak of
@, , @y, and of 1, &, as being doubly conjugate. The dindvls lies in the plane
of intersection of the tangent primes of @ ai its two ihderscctions with £, and
the line 4 lies in the interscction of the tangemb primes of @ at the two
points {, b).wQrpatiestitorthey Qgﬁ%qcms (2, m{%{ﬂ , @y) become two vircles
of which either coniains the antipoints of #ig other. Tu metrical terms, two
stch circles can be obtained by first taking e ¢ireles in a plane which cut at
right ungles, and then turning one of thege, through a right angle, about the
common diameter of the two original ¢izeles.

(¢} Two conjugate planes @, , wymay lie in a prime, say 3, and will then
meet in a line; when this is $0,.80 lines 2, /; intersect, namely in the pole
of £ with respect to €. The sections (Q, @), {2, wy) then project into cireles
lying on the same sphere, #hi¢h is the projection of (Q, 3). The pale, in
regard to this sphere, of the circle arising from the seetion {Q, =) 18, u8
remarked in (&) ahové, “the’ projection of the point (2, 4), that i, in the
notation of (b}, thesprofection of the point I, which lies on @y, Thus, for
the circles, on the{sdme sphere, which are the projections of (2, wy) and
(2, @), the pololof the plane of either, in regard to the sphere, is on the
plane of the dther. The iwo ecircles therefore meet one another at right
angles, in two'points.

{(d) Cetsider now the problem, given two lines 4, {4, uot meeting one
anothefjin the space of four dimensions, of finding a third line, meeting 4
anded3, ‘which shall be conjugate to both. On projection, this gives rise 0
th@\problem, in space of three dimensions, of finding a circle meeting al

»ight angles, in two points, each of two given general circles.

) The line to be found, being conjugate to 4 and /4, must meet both the
polar planes @, @y, in regard to @, respectively of /4 and ] ponversely,
uny live meeting the four elements 4, &, =, @3, is such a line as is desired.
'l:he prime [/, &], containing the lines 4, 4, meets the planes =, = in two
lines; thusthere are two lines satisfying the condition, namely the transversals
of £y, I, which also meet the two lines in w; and w,. Let oue of these meet
4 and &, respectively, in ¢ and €5, and the other meet /i, &, respectively, in
Dy and By,

{g) We can shew, in (d), that the polar primes, in regard to , of the two
points B, Dy, both contuin the line ¢, Cs; this, therefore, lies in the polar
plar]e of the line D,D;; the two lines ¢, D, D; are therefore doubly
conjugate.
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For, let the pole of the prime (€}, @), whieh lieson 4, be at X,; the polar
prime of X; then contains the line €%, in the prime {6, 73], 50 that X,
may be defined as the point on 4 which is conjugate to Cy; the condition €, C;
should meet @y is thos that £, and X, shoald be conjugate to one another, in
regard to @. Likewise, if .X; be the point of 7, which is coujugate to €, the
condition that ¢ ¢ should meet =, is that ¢4 apd X; should be conjugate.
Starting, however, with X, and X, and defining ¢4 and ¢ as the points on
i, &, respectively conjugate to these, we see that the condition that X, X,
should meet @ and @y s likewise that X; and ¢ should he conjugate and
aleo X, and €4 be conjugate; these conditions are satisfied, Thus we see that
the second solution, the line D) D, iz that in which B is X, and D; is X!
This shews that the lines D, Dy and ¢ (% are doubly conjugate. O\

Thus we have the result: Two cireles, in ordinary space, In general {msition;
are both met at right angles in two points by each of two other circlésy ‘and
these ave so situate that the antipoints of either lie o the other. 3 by

The properties for spheres and cireles in ordinary space, proved in this
Note by consideration of space of four dimensions, are obtaiied otherwise
and developed further in Coolidge, 4 freatise on the circle, ond the sphere
{Oxford, 1916), Chap. xii, pp. 448—450. \¥;

P42 EBx 2. ITL, I, m, m', n, n be regarded as eoprdinates in the space of
five dimensions, the six primes (fourfold spaces) g;iv’%l £0=0, mim'=0,
a0, meet any plane lying on the quadris/& dinkibrhich doyrin
vonie, )

p- 47, We give here an investigation . ofvthe general ].im;ar orthogongl
transformation in » variables. Certuin ‘preliminary explanations of matrix
notation are useful for the briefer statement of the argument,

A set of 7 numbhers g, ¥y, ..., Zu Way he denoted by a single symbol, y;
the sum of two such sets, y and w, denoted by y-+&, or 21y, meals the Sft
of numbers g+, ..., ¥u+25%, the product of two such sets, denmabey
¥, or zy, means the single humber which is the sum of the ?L numbers
WUEr, #o&sy oony Yo, A (square} matrix, of n rows and columns, WTINg ra
for the sth element ofithe #th row, may be denoted sim ly by @; then ay
denotes the sct of rhnuthbers such as Gpd +e- +@mfas 5 7=1, 2, o005 B

: e ing hich is the sum of the # numbers
Whenee ay. & denefes’the single number whic A

@31+ ...+ G o)), Which is Sy .ys, for 7, §=1, 2, ooy B

the so-called Jinit matrix, having ¢.=1, =0 _(r=|=-?); ay . & hls %w mT::
symbol a. yz doks not occar. The sum of two matrices, g, b, eac 13 e{:ament
and columng, denoted by ¢+8, or &+, is the matrix whosehg:}iiqr narall
i @y + g VThe product of these matrices, denoted by gk, which 15 ge! 7

. R ; i duct
differefit\from hg, is the matrix whose general (7, s)t};lhzlf'ﬁle:;wmoft' ]::: 231 ;:lhe

of thelsots constituted by the numbers occurring in :
a;tf) “Iéggumﬂ of b, namel}{ is Sty If the Jeterminant | @ |, formed with the

$ § -1

elements of @, iz not zem,‘t.here is another matrix, denoted I;?a‘:n 4 :llld
ealled the inverse of @, such that the prodl:lct of the tw% mﬁt:_cfs a~1. a=1f
in either order, is the unit matrix; a fact which we denote by 2. is b~1g~l, ar
The inverse matrix of the product b, of two mat:llce%:) the matrix &
{@hy"1—=p-15-1, Even when |q|=0, thefe correspﬂge; bere by 4, whose
austher matrix, called the transposed of a, and t‘ien;)he flopi of’“; the
*ows, in order, eonsist of the elements Wh‘l]‘;_hthtg_l;-lansposed matrices in the

transposed of the produet ab is the product ing sets of
reverse order, or (ab)=bi. By what i8 saidl a.b(.):t:_- ::E‘:vi (]%:gglfsfﬁ)'l;
% numbe . @=dx.y. PFurther, when a-= eXISiS, T, d b being
for this i:’%ﬂfg ;‘(a_,) 31’ or ¢—1.a=1. With these notations, & aik
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(square) matrices of » rows and columns, and &, y sets cach of » numbers,
the product of the sets az, by, namely ox. by, is equal to de. ay or ab ye;
for ax. by is &. (by) #, and thisis (. by)x, of which 4. by is ut once seen to be
ab.y. In accordance with what has been said, the symbol ax. sz, which we
shall asually write as?, denotes Z2a,.a,a;, or Sa;0,% + 33 (@4 ap) 21075 when
a is symmetrioal, or e=4, and &,=t,,, this iz the ordinary quadratic form
Sagald 4+ 28w, x.2p5 but when ¢ is skew symmetrical, or g = —~ 4, then a;=0,
#ty=— g, and oa® is identically zero. Conversely, when e s any square
matrix, the equation a2®=0 can only be identically true for all values of
@y .ory Ty, provided o be skew symmetrical. )

After thie necessary explanation of notation, suppose that the yuadrdtid
form 2+ ...+, which we denote by 2%, is changed identically intosthe
quadratic form 2% by means of a linear transformation which we degote’hy
& =ma; the matrix m is of n rows and ecolumus. Thus me. me, or gha?)is
identically equal to #%; whence mm is the unit matrix, or mim — L. (Ilerdcee the
determinant |m| is not zero, and M=m~! leads to mm=1. Now'let £, &
denote respectively the sets 2+ rand & —x; then £+ £ =22" 2wy =m (£ - £),
leading to (m+1) &' ={m—1)£; while also f=(m+1} 2. { &

Assteme first that the determinung | m+1% ig not zero. Then remark that a
relation 5£%=0, whore b is a matrix of # rows and columgy,”if identically true
in regard to 2, since it requires & (m+1) 2. (m+1) 2:20»and heuce

www dbr aull@fq;m,g{ﬂ*q)mg=0’..\‘

leads to (m+1)b(m+41)=r, where r is skew symmetrical; this shews that b
can be expressed ax b=(m+1)"'r{m+ 1) L\Mence # is skew symmetrical ;
for this gives d={Fi+1)"*7{m+1)"!, wherein 7=—r. Now the equation
22— 22=0, or (¢ — 2 (& +-2)=0, or FESDdsince £=(m+1)~) (m—1) £, gives
(m+1)"1{m—1) £=0, which is then jderitically true in regard toz. Whence,
by the remark just made, (m-+1)~1{= 1)= —¢, where ¢ is skew symmetrical ;
this leads t0o m—1=-(m+1)e, aud hence m{l+e)=1—¢, which gives
(m+1}{1+e}=2, so that the dbo{crminant |1-+¢| is not zero. Wherefore we
may write m=(1 - &) (1 + )" which is in fact the same as m=(1+¢)" (L —¢},
because (1+¢) (1—e)=(KLeVA +€). Conversely, whatever skew symmetrical
matrix ¢ may be, fromygn (14 €)1 (1 — ¢}, and m=(1 — )1 (1 +¢), this latter
following from the fitsbform of m, we have mm=1, which shews that the
transformation ®=fmp changes a? intn %, And we notiee that, as the
determipauts |1 €&],"|1—¢|, of which either is the transposed of the other,
are equal, the d8feérminant |m | is equal to 1 '

When the@ptofmingnt | m+1| vanishes, the preceding argument faile, In this
ease howsger;"as we shall shew, we tan find o matrix g, obtaired from m by
the chagge of sign of all the elemenis of one or more of the rows of m, such
that ghetdeterminant }p 41| is not zera. For such a matrix is of the form
p=m, whero £ is a diagonal matrix, having all its elemeuts zero save those in
ke diagonal, each of which is +1; this gives p+1=fm+1=tm+2=t(m+1),
auil the determinant |p+1/ iz the product of |£], which is £1, hy the deter-
minant of m+¢; this last is obtained from m by nddiug ¢,, which is £1, to the
#th disgonal elereent of m. Thus it i3 sufficient for our purpose here to shew
that not every one of the possible 2" determiunants | m +£| vanishes. For this,
first, if two determinants [m-+¢|, in whieh f; is respectively 1 and —1, while
fz, 3, «uo; ty, are the same, are both zero, so is their difference; and this is
twice the first principal minor in {m4#|. If then this be xzero for all values
of £z, ..., £, we similurly derive that the first principal minor, in the minor
considered, is 2ero for all values of 45, 4, ..., 4. Continuing in this way,
and denoting the (#, n)th element of m by ¢, we should conclude that both
¢+41 and ¢—1 are zero, which is impossible.
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Let then ¢ be chosen so that |#m31]| is not zere. For p=im we have
pu=7t*m=mm; since, by hypothesis, 2’ =ma» leads to 4%=2?, we thus have
Ep=1, and the linear transformstion o' =px changes #* into 4?; while, by
the previous argument, :

tm=({l-e)(l+e)1=(1+)~"(1-¢),
where € is a skew symmetrical matrix; and, conversely, as before, whatever
e may be, this is a sufficient form. We have thns proved the resalt: By means
of the linsar trangformation 8’ =(1=—¢) (14}~ Lo, whore ¢ is an arditrary shew
symmetvical matriz, the quedretic form 2* (=xft+x+... 12l is chenged
to 2%, Ii is thus ohvieusly alse so changed by any one of the 2° fineoyr irans-{

Jormations N

(s, oy ooy tat)= (L= S (L (@) a3y s )y N
whevein each of f1, ..., b, 48 +1 gr — 1. Fui conversely, every possibiNinsdr
trangformation which changes a® to &%, is necessarily of this latter formyfor o
suitable choice of € and af f1, ..y tan N

A simple example may be added: Let a;, as, a3 be arbittary dumbers,
and let £ denote (@, +ag+e 2yl Let the matrix m, of thé theorem, be of
three rows and columns, and have, for its diagonal elenient, my, j;he value
hlaf—ea~ m?), and, for its element my;, the valueShaje;. This can be
shewn to give mm=1, but | m+1|=0. If however waddke p=im, with & =_11’
= -1, %4=—1, we find (zp+1)=8he"% and p %efﬁ&rﬁ?&’&l{&?aﬂ)?é}‘g,m
with ej3= — @, LGz, €13= — ;" ', em=0. ¢ ,\ .

We may also add a general formula for fhe\Jinear transformstion of the
quadratic form #2® into the form aa'®, whore's, o are sets of n numbers,
and @ is a symmetrical matrix, of # rows’ and colomns, of non-vanishing

- of non-vanishing

determinant, sueh that «~'=kk, so that kak=1; then the Linear transforma-
tion, to varia,bles X1, ..., X,, expregied by 2=4X, changes 'ffz into sk X, KX,
or kX, or X2, Similarly, df\e’ =X, we have ar’=X% We mag now
take the most general linear ‘transformation f?r which X' S—I:X ’h o
simplicity, we limit curselveghere to the form X =(1-£1{ :"E)f 2 ‘:OB:,G
£is a ske w-symmetriealanatrix, we find, for the transfolrmatgﬂtrll -mﬁ]x a.]s':;
the formula, r=(a e}~ (g~ 2, where e=("})'_1E?f' y Whrlﬂ 18 Brfs the
2 skew symmetric matrix. Conversely, the equation {atao=(a _':felfltlimﬂ
same as af = — gf, Where £=a'+2, £ =4 —x; thus a?& - #.Ejﬂ’ ls)l(-r'+x) '1);
zero; sud, bee&uée @ is a symmetrical matrix, at’t, =a(@—% N
ax’® — axt, Thas axr'?=ga®, as required. i

. throngh an

) - ; be drawn
P 49,887 1. In fivefold space, a unique line can ;
arhitraty point to meet both of tw[; given general pl_arua.rsil Pr](:;eémofﬂgli:eﬁ:fo’
that ke line LI’ is the unigue line through L meeting the p

2. 2. Prove that any plane of either system lying "?e :‘:};;jgmdm o
Which meets a conic lying on &, likewise meets the conjugs .th 1 their

Ex. 8. Consider four lines of ordinary space having thb:.tp trﬁgef?gr P:ints of
two transversal lines coincide with one another. .Sha\:ht lines, determine &
the guadric @, in the fivefold space, which represent Bseofl  at some point
solid (threefold space) lying in the fourfold t“_’}g‘-mt.ﬁpiﬁg line ¢coordinates o
of this solid. 1f @y denote the bilinear m‘_’arf:;t’ l‘:hen the lines intersect,
two lines (1) (2) of ordinary space, which vamsnes Tines should coincide is
Prove that the condition that the transversals of four ; Wy, To Tags T19 T
that the sum of the equare roots of the three Pmdt-th gfnd}ii’on in the space
should vauish; and identify this with the geometrica

of five dimensions which has been stated.
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In general, the cross ratios of the two ranges which four general lines in
ordinary space cut on the two transversals of the four lines, are the roots of
the quadratic equation in «, .

W@y (1 =) T T Tux - T Ta=0,
a proper one of the six cross ratios of the four points being taken.

Ex, 4. ln ordinary space, it is possible fo have two sets of five lines,
a1, g, G, da, 05 and by, bz, by, By, B, with the property that any four lines of
either sct bave their two transversaly coincident, namely in the complementary
line of the other set {so that, for example, the two transversals of @y, s, €3, ag\
cointcide in the one line b;). Such a pair of sets can be constructed as follows}
Take, on an arbitrary line g;, regarded as belonging to a linear complex of
lines, four poluts 4, 4y, 4z, 44; from these draw, respectively, theNites
by, By, by, by belonging to the linear corplex; ihen let &, be the lifigy of the
linear complex, other than a,, which meets the three lines b, ba~,~f)4‘;’ and let
@, 3, 24 ba similarly defined. The condition that the transersals of the
four lines @1, 6y, 43, 6, should coincide is then that one of theeross ratios of
Ay, Aa, 45, 4, should be —o, where @’ +wo+1=0; the single” transversal is
then b;, completing the second set of five lines. BepteSeuting the lines by
peints of a quadric @ in fivefold space, and consideriy? the fourfold space
which i taugent to Q at a peint, prove that the pre Slem of constructing two
such sets of Aveedhsawihzeeaxghal, in nr&l;jar_v space, is the problem,
given a quadric ¥ in space of four dimensiogé\ bf finding five points of ¥
such that the five threefold spaces containing fours of these poimts should he
tangent threefolds of ¥ (namely the simplex thould be both inscribed to and
circumscrihed about ¥). Shew that the eguation of the quadrie ¥ is capable
of the form : ™

yz+m'+.ry+tu+£(xi—ja;“,-_;;%coz)+u(x+my+m2z)=0.
The reader may consnlt B. Segre, Mem. d. R. Aec. Noz. d. Lincei, 11, 1927,
p. 204; and dnn. d. Mat., xvi, 337, pp. 1—4.

p. 62. Denoting coordinaies in space of five dimensions by x, v, 2, 2 ¥, %>
we may defiue the Ver %se surface, ¥, as the locus of a point for which
r=£, y=1, a=(% ‘?,=‘7L: ¥=(£ & =&y, where £, { may be rcgarded as
coordinates in a plane That the surface is of the fourth order, namely meeis
an arhitrary lineax threefold space in four points, then follows from the fact
that two couiggdn’a plane have four poiuts in common, A line in the plane
then corregpends to a conic lying on V, and 2 eonic in a plane to a rational
quartic ¢arwe on ¥; and converscly. The plane of the conic on V which
correspor?ds to the line wf+en+w¢=90 iz then given by the three equations
ur+ ARt wy' =0, vy -+ +uz =0, we tuy +va’=0, From this it follows at
onee that, of the planes which meet the surface ¥ iu conics, there are three
¢ “which meet un arbitrary line I of the fivefold space. If we project the surface
¥ from /, on to &n arbitrary solid (linear threefold space} II by means of
planes drawn through £, each to a point of V' (a plane in the fivefold space
meeting I in a point}, we obtain the quartic surface in threefold space kuowa
as Steiner's quartic surface, having three double lines which meet in one
point. Far, if a plane @;, which contains a conic oy lying on ¥, meet Z, the
threefold space [w@,, {] meets II in a line, each point of which arises doubly,
namely from the two points in which a certain plane through I meets the
sonic ;. Every two of the conics ey, oy, 03 on V have a point in common;
assuming then that, in general, a quartie surface in threefold space cannot
have three double lines of which every two intersect, unless they meet in a
point, it follows that the surface obtained i the Steiner surface. An ipeidentsl
consequence is that, through an arbitrary line 7 there passes a plane which
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has three puint-intersections with the surface P, namely the points of inter-
section of paivs of o, @3, ¢4; thus, if we project the surface ¥ from an -
arbitrary poing, on to a fourfold space, we obtain, therein, a quartic sarface
with the property that, through an arbitrary point of the fonrfold space, a
single line is possible meeting this new surface in three points,

The points of the original fivefold space whose coordinates are given by
vaviation of {, m, n in the formulae ¥=al, y=bm, z=cn, & =% (bn+em),
¥ =%(c/+un), ¥’ =3 (gm-+b), lie on a plane, given by three such equations as
2a'be=2h®4-ye?; this plane, as we see ut onee by cousidering the parametrie
expresgion of the coordinates of a point of the surface, meets the sucface . O\
ouly in the point (42, b2, 2, be, ca, ab), and can be shews to contain all the
tangent lines of the sarface at this point. This we call the tangent plang(of,
the surface V5 it meets the tangent plane st any other point (&2, ... big 0%
of the surface, in the point whose coordinates are aa;, b, ce(, 4 (bedd-hic),
% (emy + ey}, § (ahy +a,b)—though, in general, two planes in fivefold epace do
not intersect; aud, by varying @y, by, €,, we have thus a geometiical repre-
sentalion of the points of the surface ¥ by the points of the tahgent plane
of 7" at an arbitrary point. As remarked in the text, in gpace, of more than
three dimensions, save for cones, the Veronese surface s’ unique among
surfaces in this intersection of the tangeut planes at\(wo arbitrary points.
With the sume exception of eones, the gurface V isounique in the fact that,
throngh an arbitrary point (4, B, ¢, F, &, Qf(&%}‘ﬁﬁ%ﬁy‘&gﬁ
line ean be drawn to contain two points of{the surface. Thal o s
chord is possible is obvious by remarking thab*six eguations of the forms
A=AEF+pd, ., F=hm{+anls, -~ would‘mvolve, for arbitrary £, 2, {
the possibility of writing the general quadvatic form A?;‘---'!‘zﬁf_""" 48
the sum of two squares A{EE, +ym +{0S p (£t bame+(G). But, taking the
Plaze of any conic Iying on V, a lineycan be drawn from an arbltra.rt;fk Pomfigo
moet this plane and also meet the-surface ¥ fu one point. For, l_;.“g t:
conie which eorresponds, in the parametric representation of thal Euthm’ b
the lite w4+ wl=0, the géneral solid (linear threefold space) throug
the plane of the conic & aQqﬁaﬁians of the forms

(wr4re' 4 u’!{%’ A=(vy +wr +uz)[B =(ws +uy +o2)0,

and, we casily soe/inpets the surface V again in the point (4% ..., B0, )3
8% We can chgnse‘:??B, ' so that the solid passes through t}?u arbltl?t ﬁ.pogllt:ll:
of the space, thevresult follows. And there also follows the l'gl‘?:n o iie
surface ¥ canybe represented gpon an arbitrary plane l.)y ij::e that, for the
plane of ;?&pc’onic lying on V. Asa corollary from this, t";erl - Foom an
surface, (it space of four dimensions, arising by DT olane of any one
arbitdwy ‘point, which, like ¥, will contain = Uol}lcs,th & P e, This may
of #he¥h conies has a farther isolated intt_a‘:B%tmn‘mth ¢ sfl;;e I 'on a plane,
b verifed directly from the representation of this new s:l rf this I:mw surfac:l
whick may be takan to be that the conrdinates of a pmi}lo rojection of the
are £, &, 3 (E0+2), ¢, (L We may noto also that the PLORCC v e
Veronese surface P upon a fourfold space, when the centre nfemtor of this
upon V, is a ruled cubie surface in this fﬂ“_"ﬁﬂd spac]:l’;, augﬁi the centre of
arising from one of the conics upon ¥ which passriéwl': gptm s threefold
Projection; the further projection of this ml?ddsuurface o hich all the
space, from another point Iying on v, is a T0.8 Sf the eonic. lying on ¥,
generators meet the line which arises by PPUJ.“t‘°igother projection of the
Passing through the two centres of projectiom. {llustration, in the Note to
surface ¥, from a point on a chord, arises a3 u , T

. 181 W, ' ion, in the
b We %Ea).ifebil;a::hed the surface V in the text a8 the representation,
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space of five dimensions, of the lines which are the chords of a rational eubic
curve in ordinary space. It is proper then to remark here on the theorem,
that every quadratic complex of lines in ordinary space which contains all the
chords of a rational cubie eurve, is a tetrahedral complex, there being ot
such. As isexpluined on p. 230 of the text, the lines of a tetrahedral complex
are represented in fivefold space by the points in which the quadric @ is met
by a qnadrie 2’ upsn whieh lie four of the planes of the first sysiem whicl hie
on £, as well as four of the second system. The Veronese surface considered
ahove lies on any quadric expressed by an cquation of the form

a4V e W20 + 29V 25 W' =0,

wherein U7 denotes y& — 2%, ¥ denotes o — y%, UV’ denoiesy'2’ —xa/, V' denotes
Y& —yy, and W, W' are similar, the coefficients a, 6, ..., f. g, .. lchg
arbitrary. [t can be shewn that any two sach quadrics, ,, S\ with
coefficients respectively aj, ...; A and @, ..., hg, have eight, planes in
sommaon, four of one system and four of the other: A planescofnmon to
3, Sgis given by three linear relations connecting the coordinuheday, ..., &,
which, taken together, lead to 2,=0, Z;=0. If £ 5, { bel coordinates in a
plane, and we take the conic X=af+.. +2am{+...=0, tha¢onditionsz 2,=0,
$,=0 express that the conics 8j =g 84290+ ... =0, BB 88+ 2on( .. =1
are outpolar to X this will be s if a triangle inscribed to 5; and & be self-
polar with res‘f[éﬁ'%ﬁl@r?%'wm%iiﬁ for thig,Dowever, are three lincar
equations connecting the cocficients o, ..., #An"the equation of X (the
eaeficients in these equations being bilineai\fapetinns of the coordinates of
the vertices of the triangle). Thus, by taking frinngles with vertices at three
of the intersections of §;, Sz, we obtain feur planes common to 3, 253 it can
be shewn that these are planes of the'same system, and from the existence
of these there follow four other comugion planes. But of the conclusion so
reached, that any quadratic compléeof lines in ordinary space which contains
the chords of a rational cubje cirve, is a tetrahedral complex, a direct
geometrical proof (remarkedBy Dr Todd) is possible: Consider the quadrie
cone formed by the lines, of ®yguadratic complex, containing the chords of the
eubie eurve, which pasg\v rotigh an arbitrary point @ of the threefnld space;
let 7, V be the points where the cubic curve is met by the chord of the
curve through O, aidy.4, B, €, D be the other four intersections of the
curve with the qukdpié ennc; the lines of the complex which pass through A
already form a @uadric cone, that of all the chorda of the curve which pass
through A, ¥7d there is, besides, the line A0 lying outside this cone. We
infer therefodethat «if lines through 4 belong to the complex. The complex
is thus %ﬂhedml, having A, B, ¢, D as singular points, and the plaues,
coutaiting threes of these, as singular planes. Analytieally, it can be proved
that.fhe general quadratic complex, containing the chords of the cubic carve

. 91‘5 iﬂ]iuh the general point has coordinates (8%, 6%, 8, 1) is

@ Oy b & O+ a2 Co a0, 3+ 0, 0y =10,
where ¢y, ..., 4 ure arbitrary, and, in terms of the linc coordinates,
C=mt4+nl—nl, O =mn' —I'm, (3=0+nn/,
O= ~{I'm4m'n), (=m?+nl'—nl;

and that the cone of rays of the complex which pass through the point
(6%, €%, 8, 1) of the curve is f¥ =0, where 7=0 is the cone of chords of
the curve through this point, and f=a,8"+ a6 +a, 824 gz 0 4a,; thus this
complex has the four points given by =0 for singular peints.
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The Veronese surface containg rational guartic eurves, which then lie on
any quadrie containing the surface. Consider, more generally, an algebrais
eurve lying o1 a ghadric in space of any number, », of dimensions, There
will geuerally be particular tangents of the ecurve which lie wholly on the
quadric. (it may happeu that all the tangents of the eurve lie on the
quadric; then there will generally be a certain number of peints of the curve
at which the osenlating planes lie whelly on the surface. A general theorem
iz as follows: Let the eurve be of order n, and of genus p, and have « onsps;
snppose Lt every osculating {¢—1)fold of the carve, determined by
“cousecitive” poluts, lies on the yuadric {and therefore every osculating
{89~ 1}-fold, for sy<s), where #<c}».” Then the number of oseulating s-folds
of the curve which lie on the quadrie is in general 2{n+2s{p—1)]- 2+{_For
example, of a rational quartic curve without eusps on a quadric in-space’of
three or more dimeusions (n==4, p=0, #=1}, there are four tangents lying
wholly on the quadrie. The reader wmay consult Proc. Edsin.:jaﬂz,tfa. Soe., 1,
1927, p. 25 o\

P. 104, 'T'he word sofid was chosen as being the proper éxfension of paint,
line, piame. Tt has since been found that it had been usedGny1890, in the Amer.
J. Math., xiz, - 181 (Rotations in space of four dimensigns). Perhaps a refer.
ence may be permitted to Jane Austen's Per i m_where Lady R_usse]l‘,,
cousidering Mr Eltiot, *found the solid so fully sapporting the superfieial....

The ward prime, for a linear space of < Bliiedousuiibe frydemarial
space of » dimensions (nsed here on p. 219wnd elsewhcre), seems preferable
10 the earlier Agyperplane. Though adopted” independently, it might have
been suggested by I'. del Pezzo, Falsrmoodicni., 12, 1888, 1)‘."141, who speaks of
“le prime sezioni,” and (p. 143) of\the “prime varietd” of a space, The
word secundim, for a linear space ¢fy —2 dimensions in a fandamental spaf)_;
of 7 dimensions, is often convenient also. An algebrsic locus, in sp m}?- h
r dimensions, defined by a single relation connecting the ecoordinates, whic
is not linear, is called a primai, : D Dissertation

p. 105, The paper, of (E} L. Elte, referred to, is a Degree Uisse :
13 May 1912 (ng?-_ Holtsema, Groningen), “The semiregular P"I?‘{Pfgsgf
the hyperspaces.” Bin p. 111 he gives Ry=21, By =216, Rs::'?g{)}‘gﬁ_md’
Ry=216+4 432, apd\&;=72+27. The reader may consult Tedd, O;L“aciall\;
Hath. Sou., vt 3932, pp. 200—-205, and the references there giver, Sspunn 4
Coxeter, Trags. Roy. Soc. {A), coxxix, 1930, pp. 320—425.
ieade in the €kt has been very fully justified. 5. after the

P 1GB\Pr W. Burnside wrote to the auther, 20 Seﬁt‘ lgfmfm of the
publidtiof of this yolume, that, though not doubting the SesUd O,
resulty Bie was not satisfied that the proof of the identity po 82

Dhggwas complete, . i

O\ 113, Chup. V. To many readers it will seam that the thepry, o B
chapter would have been more easily zpproached if the cquation connesting
order (and of three dimensions, being given by only doﬁ: ?lqwnsidered before
the coordinates, and therefore called a primal), had al: of the points of &
that of the loeus =, whose tangent primes are the uthem the fact that the
Varions rensons suggested the order adopted, among seemed more natural
deduction of the Kummer surface, as a section of %, “The locus § arcde in
than the consideration of 2 prefile {apparent contf?ur)ﬁic rimals in space of
the course of a systematic survey, by C. Segre, of (WP E

. J A##i...Terino, xx11, 1887 ; see
four dimensions (Mem. 4dce. Toring, Y2315, 1866; igé%__lggl): a8 t,hat havin

also Castelnuovn, A¢i... Pencto, various papers, t, on a gene
the maximum p(;ssible number {10 ?f nodes. ’I_'he il':il;tasﬂ:)af' ;Fhich Bgf:: pass
cubic primal in space of four dimensions, there ara -

H, &. TV,
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tlirough an arbitrary point of the locus, was noticed by Sylvester (1851}, See
¢oll. Maith. Papers, Vol. 1, p. 1765 he considers, in space of » dimensions, a
primal of order r—1. Many of the properties of the figure, deduced in the
text by beginning with four skew lues, are made more luminons if we begin
with the six points &, &, «.- referred to on p. 116, The fifieen lines of the
fignre, each the iransversal of a complementary set of three joins of these
six points, are then representable by the synthemes formed from ihese six
peints, and the fifteen points by the daads of these, the phraseology being as
in Vol. 1z, p. 221. If the points I, G, H, F', &, II' be denoted in order by
1,2, 3, 4, 5, 6, the systems P, ¢, in the table there given, will cousist of th¢ \
lines denoted here by a, #, ¢, 4, € and &, ¥, ¢, o, e, in proper order. In
particular, it is easily evident that the figure considered here is invariaqf sor
a group of 720 collineations, and any onme of the six systems of Jiyessis
“imyariant for & group of 120 collineations, simply isomorphi¢ with the
symmetric group of five symbaols. AN
The theoty of the primal § may be considered as on pp. 18N—158 of the
text. Or it may be considered alsa (Proc. Comdb, Phil. Soe., XXX 41956, p. 513} us
follows : Take asimplex of five arbitrary points, in space offturdimensions, and
denote the symbols of these paints by 4, #, 0, D, &. Théwtike another stuplex
of five points, of symhols 47, B, ¢, I, B, determine{l‘by the equations

A=A — B-E, BBialibfiry Grdm b D'@D—’E— C, E'=f-4-D,
which lead to ‘S

3
A=A €', B=F_--EQp 0=0'-FE -4,
DD - A'— B, B=p — 8-,
and alzo to N\
BB+ + V=0, C+ARD+E =0, D+B+E+4'=0,
By O+ A +B=0, A+DrH4+0 =0
If we denote A, B, €, D, K, {NB, ¢, D, E'by 1,2,8,4,5,1,2,%, 4,5,
the simplexes are so relatédythat the planes 512, 123, 234, 345, 451, of the
firgt, contain, in torn, bkké\ﬁértices of the second, and the planes 134, 245,
ST, 412, 52, ofithe second, eontain, in turn, the vertices of the first.
Also there are five edkes of the first simplex each meeting an edge of the
second, the pairaofintersecting edges being 52, 34 ; 13, £'5'; 24, 513 35, 1'%
and 41, 2'F ; it is busy to see thut the five planes of these intersecting pairs of
edges are the/ lanes of intersection of the prime faces of the first simplex,
taken in&rﬁ, each with the corresponding face of the second simplex. And
these fiveplunes are associafed, in the sense that every line meeting four of
them,alse meets the fifth. We may give the proof of this statement: If w1,
@Wysnily, @y denote respeciively the planes (B, &, 7, m, (0, A, I, EY,
LB, B, A, (B, 0, A’, B), and we denote by =y, the plane which meets
each of @, @, w, in a line, and so on, we may see that the planes @uy,
Tau, Wiz, Ty Ar respectively (0, ¢", B', AN, (4, A, B, B), (I, U, E, &,
(B, B', I’, EY). These planes have, for points of intersection with @7, @1,
@y, W, respactively, the four points €, 4, B, B', which are the points of the
fifth of the planes considered above, say @;. This is the construction for the
plane associated with four given ones. The set @og, Fae, T, T13: @i
equally form an associated system. Beside the nine planes now considered,
if the plane meeting three given plaunes in lines be called the transversal
plane of these, the figure contains the transversal planes of @y taken in turn
with every two of the planes @y, @a, @3, wy; theso six planes are

WBBZ(E,’ E, 4, ‘D)J m316={0': O; D: B), le.s#(fia AJ: Crs 'U,)J
g ={E, E', B, Or), W2.15=(B’, B, O, A), W315=(D, i, A, B‘).
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We thus have an exact doal of the figure arising from four lines (given in
the frontispiece of this volume). In particular, the planes which pass through
any vertex of either simplex arrange themselves in two triads, such that every
plane of cither triad meets all the planes of the other triad in lines. And,
from the fact that the figure is dual to the figure of lines considered in the
text, we draw the inference that the ten points formed by the vertices of the
two simplexes can be arranged as two gimplexes in six different ways, the
condition to be observed in forming such a new simplex being that no four of
its vertices lie in a plaue,

If we use coordinates &, £, &, &1, &, relatively to the simplex ABCDEY
5o that, by the definitions above, the prime faces of A'B'¢'DE" are given by
b mf— b =8 =0, E=f—di- &0 &=h-&-&=0 (\J)
& =8i—-H—-6=0, £ =& &~ 6H=0, . '\\

we easily find that the equations of a general line meeting-iho planes
Wy, Wo, ovey T 4T ’:g ;!
ufy=Est &, bhi=5té, «fﬁ'ﬂfs“‘béqﬂ?s\
where «, ¢ are arbitrary. Thug these lines deserihe thé\primal represented by

N R N

0, -4, btk }vtﬂbl‘aulibrary,org,jn

by & B
And we find that the general line meetingtite planes @gy, Taie: F1ae > Piosy Ts
is given by &=ME,, &s=phs, Metuft(1+ATp) £=0, where A, p are
arbitrary, Thus these lines describethe primal represented by

~E, 0, Bt (=0

0\; —£&, &th

S '\‘S‘l’ > g-l 2 55
These iwo equations 8f the primal are both the same a8
ﬁi&&i‘&g&&‘*’535451*’545552 +&66=0,
and this contujng four spstems of lines ather than the iwo systems considered.
Referred fo, .t@&implex W BCDE the equation is found to be
AN B B S A0

Thus ¢heévprimal has ten nodes, at the vertices of the two simplexes; it can be

proved that it has no other nodes. From _the expressions for £, ... in terms
Jo{\Ly, ..., it can at once be shewn that the twe simplexes are polars of one

\a.fmther with respect to the guadric whese equation i&
5 5
SLE-25Gi,=0, - (wbereds se=Fi)-
1 1
The eqnation of the primal arises in a very simple way: For if iEII that
eqnation we malke, for i=1, ..., 5 the Cremona transformation &=2X;"" the
ses=Xer Now take a skew pentagon

n 5 -
equation becomes E X; X;, =0 (where X,

the vertices of the simplex (X1, Xe, -5 X5);
the edges 12, 28, ..., 81 of this pentagon then

if, herein, we put Xi=ayZ, (E=1, s 5),
' 17—2

1
whote vertices are, in order,
the general quadric contaiung

5
has an equation 32 AIEY.€2. 6% H
=1
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wherein &), ..., @; are respectively ejzeycos, ¢2Cafi3, CaaCisCas, C4Cacs,
5303500, the equation reduces to £Z,Z;, ,=0. Thus we may say:
1

Take any skew pentugon in five dimensions (X5, ..., X}, with vertices in furn
at the vertices of the simplex of rofevence; then take the generaed quadric containing
the five joining lines of ifs vertices laken in order; then transform this guadric
to a cuble primal by the formulae X,=§,7L. The resufting primal, in the
space (E1, ..., &), is the Segre cubic primal, having nodes at the fire vevtices
£1)y ver s {&2), a0 five other nodes.

n fact, the first polars of the cubic primal for three consecutive vertices of
the pentugon, £ £:£38,65, have a plane in common, and the first polars of the
other two vertices meet this plane in conics (each breaking into two liueskof
which three common points are the three consecutive vertices spoken of,‘and
the other common point is one of the five additional nodes. I we tiks the
planes oy, ..., a3, of which & contains the vertex 4 and the fore wfid aft
vertices &, B, and so on; then the first polar of 4 containg™the plancs
a, a5, oz, the first polar of B contains the planes oy, ay, agyyand “the first
polar of E contains the planes o5, a;, &, and g; i3 cornmon Lo these,

Two other modes of appreach to the Segre ten-nodal p¥inial are indicated
in Ex, 7, p. 160, of the text, and the Note thereon.

: - . Ny

p. 116, If, in the space of. %Opr é}} epsions, the tél binary determinants of
the coordinates\'\é?’t\\'\;r@%flau i e igie%ﬁl% oy ipd =0, 1, 23 3, 4}, and called
the coordinates of the line joining these pointhand it (p )L, ()% ..., (5P
be the coordinates of four independent lines, We may seek the conditions
that the ten expressions of the form » (g by (pi; Y+ 2 (piy)? +£ (py;) should
matisfy the necessary conditions to be ihe“soordinates of & line. It iz found
that there is just one possible set of v:-;ftjes for the ratios of =z, g, 2, {, other
than the given values (1, 0, 0, 0), .. 340, 0, 0, 1). If we call the aggrogate of
lines which satisfy a relation Zgyp;=0 (with ten given coefficients ay), o
linear complex, the =2 lineyzéiommon to four linear comnplexes are the
lines of the Segro cubic primal8 discussed in this chapler, See Castehiuovo,
Aéti.. Veneto, u, 1890—&6‘?;‘ pp- 855—4Y01; and, for further references,
Berzolari, Rend. Lincei, xdvr, 1917, p. 30,

p- 136, Ex. 1. Taking four general points in a plane, the equation of the
genersl cubic enrye passing through these is formed linearly from six cubic
pelynomials, essh\representing one such curve when equated to zero. The
point, in spaceoffive dimensions, whose coordinates are proportional to these
six polynominls, deseribes a surface of order 5, in the space ; this is one of
the surfages\of order r, in space of + dimensions, which were studicd by Del
Pezzo, «The points of this surface may be regarded as representing the lines,

in spage of four dimensions, which wmeet four general planes therein; the .

pomts/of a prime section of the surface corresponud then to the lines {of the
system, in the space of four dimensions) which meet an arbitrary planc. For
this, and for a primal in space of five ditnensions of which the Segre ten-nodal
primal is s prime section, see Jour. Lond. Math. Spo. » Vi, 1981, pp. 176—185.

p. 143 Bz 10, For a brief analytical proof that a surface of order a, in
ordinary space, which has a (n— 2).ple line, is rational, and the literature, see
Vol. vi, p. 147. Geometrically, what is to be proved is that the surface
contains a rational curve moeting all the conies obtained by planes through
the multiple line. In the particular case of Pliickers micridian surface,
discussed helow, in the Note to p. 213, theve exist rational eubic curves each
meeting all the conics.

Q!
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p. 146, Ex. 16, Incidentally, two fixed planes of the same system are met
homographically, that is, in points whose coordinates sre Knear fanctions of
ane another, by the planes of another system (having point-intersections with
these). Dually, for the Segre ten-nodal primal, the primes, which join two
tixed lirnes of one system to all the (non-interseeting} lines of snother system,
form two homographically related =? systems of primes. This i3 in 2ecord
with the possibility, already noted, of representing the eguation of the Segre
eubic primal by the vanishing of a determinant of three rows and columns.
That a cabic surface in ordinary space (which ig a prime section of the Segre
primal}, cau be so represented, is familiar (Vol. ur, p. 186).

P 7. Ex. 19. Sce the Note to p. 20. And prove, for a rational quartic
curve in space of four dimensions, that the trisecant planes of the cirve)
through an arbitrary point P (not on the curve} generate & quadri¢ sone;
and, of the second system of planes lying on this cone (not themiselves
trisecaut planes), there is one whick passes through an arbitrarg point 0 of
the curve, Further, as P varies on a line, these planes throngh’d'generate a
quadric cone, AN

p. 133, Shew that, in the correspondence considered\here, an arbitrary
line of the original spaee becomes a conic; and an arbitrary plane becomes
the surface, of order 4, in space of four dimc;ri:iopsmtthamahleh ?ﬁy P?’ﬁ;:mu?
of the Veronese surface from a point. Shew also ¢ neighhourhoods
the five fundamental points of I;hI:a original spaéfg‘ﬁmﬁ RA¥Snidgidsed
plancs of the Segre locus & 9.

p. 160. Ex. 6. Cf. Hudson, K’ummeﬁg’qﬁmﬁo surfos, 1905, p. 171,
P 160. Ex. 7. Six of the ten nodésof the locus 8 obtained by the pro-

N , A N3 - £ projection
jeetion are obtained Ly the transversals, from the cemire of proj
(a, b, ¢, ', f, &), of the pairs of the four planes of the first sy_s‘berzi.: 1&;‘11%0 ?Jz
the locus 2 in five dimensions (or, by transversals of the pis].u‘l;1 :re o
planes of the second systemy, ~And, the four lines, thmugh tte O eboms
Frojcctinn ,» which are thedntersections of CE'IPPD“-“t'gla plunes of the two 8 ’
ie on the locns 7, and rise to four other nodes. i line-
Another simple; way\of seeing that the intersection of tvifﬂc%l;ﬂ-gl‘zﬁ:;s“fy
eones, in space of five’dimensions, projects into the Seg]']re t;k 1 t0 have the
remarking that #he“two equations of these coues may be take of 1, We use
forms (”+‘T)(.\'J‘ky)=bw=(”+f)%’:"“Q: and if herei, l.\: these é‘l‘mﬁ”n’
a coordinate*w/such ihat w is the sum of o % %, f! » %
hecome 13\&?” (t+z+e), st=v(uta+y); these lead to
R\ ay (utm )=t (@ +s+y) )
e s t, o).
angrtlils is the equation of Segre’s locus in the space (B % H L. - . 0
"ot we may Eemark t.hate%his last equation 1s l?gﬁiyaiadhﬁea’ "
egordinates £,'p, ¢, T, by putting #/§=y/n= f(=tlr=
uw=r (E+m)— L {{+7)

This changes the general prime, of the space & ¥ o three skew lines and

. i taing
cubic surface, of the space (£, 7, {; r), which comtale Lag b o method of
three transversals of these. InCld;;;:n{,’aﬂths ;gﬁ_g ?SM-, xxv, 1829, p- 149)

defining Segre's locns & (Semple,
In connexion with this example, cons
C. 7, p. 958, footnote 580,

# 170. L. 8. For the lines, the reade
substitutions, 1870, pp. 309—513; and Klein,
footnote, '

Lt also Begre, Bnzykl. Math. Wigs., i1,

mpare Jordan, Traité de
; %?s'. ?{a}:AM 1, 1922, p. 274,
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p. 172, G. Timms, Proe. Roy. Soe. (A), cxix, 1928, p. 236, verifies in detail
that all the 23 types of cubic surfaces distingunished by Cavley are obtainable
by projection, from the intersection of two suitably chosen guadrics in the
spuce of four dimensions. On the other hand, this surface, I', in four dimen-
sions, obtained by the intersection of two guadrics (whose prime seelions
correspond to plaue cubie curves through five points, as remarked p. 165 of
the text) is itselllf obtainable from tho Del Pezzo surface of order &, in space of
five dimensions, referred to in the Note to p. 136, Ex. 1 {whose prime sections
correspond to the plane cubic curves through four points), namely, by pro-
jection from a point of the Del Pezzo surface.

p. 174 Ex. 8. Conversely, of, Monge, Appl. de Fdn. & lo Géom,, 1850,
Note VI, p. 609, and Bisnchi, Geom. differencinle, 11, 1923, p. 469. .\‘\

p. 174, An appropriate additional example is: If inversion in erdindry
space be obtained by transversuls of a quadrie in space of four diménsions
{as explained in the text), the equation of this quadric being v =0, where
» iy homogeneously guadratle in @, y, #, the cenire of projection being
{0, 0, 0, m, 1), prove that the cquations of inversion are al=dy, =y, 2’ —2,
t=mufi. CL Enriques, Teoria geometfrien, 1, 1918, p506; Schxparelli,
Mem, Torino, 1862; Castelnuove, A, Torino, xxxvi, 80T, p. 861.

p. 184, The reader may prove: (i), that there arg W tangent planes of the
surface T' which,maegt, %{h%’%‘jlsf. lane in a line;’(i\ﬁ, that the conical sheet
of chords of T passing through an arbitdary poipts met by a general plane in
two points ; {ii1), that four tangent planes of Ppass through an arbitrary point;
(iv), that there are eight of the tangent planes.of T meeting an arbifrary line.

. 191 (a). In the example taken, thes Tink joining the vertices is the locus
of the vertices of all cones of the systém, and lies on all these cones. In the
case of two cones g+ ux=0, 2¢+uy=0, there is a common tangent solid at
all points of = conie, and this coiiie is the locus of the vertices of all eones -
contained in the system, and{is common to all the cones. As a further
example, the reader may inxéstigate the surface, in space of four dinrensions,
obtained by projecting Ahe\ Veronese surface (£, 2, (%, n{. (&, &g} from a
point on a ehord of thkx .g. the poiut (0, I, e, 0, 0, 0)). (This surface is
mentioned by Beverigforino Mem., L1, 1903, No, 22.) In all the examples
suggested, the prime'section of the quartic surface T* is a rationul curve, and
not of genus 1, asfor a general I We do not enter into a systematic discus-
sion, which inyolvet the reduction of two quadratic forms in five variables; the
reader shoyld ¢onsult Segre, Affi... Torino, x1x, 1884,

In cmﬁfion with the particnlar example taken in the text, it may be
remarkéd\that, if {, m, #, ', m', »" be line-coordinates of ordinary space, the
quadratie complex represented by P4m?+n?+2all’+2bmm’ 4+ 2enn’=0 has
fop-its singular surface (that is, the Ilocus of the points through which the

< #Yipes’ of the complex form a quadric cone which degenerates) the four-nadal
cubic surface represented hy r—r(£24 984 {5428 (=0, where {=(b—0)n
n=(c—a}y, {={a-b)e, r=—1 OCf Segre, Mem. Torino, xxxvi, 1885, p. 157.

p. 196, Ex 3. Of the constants @, 6, p, which give un appearance of
complexity to the algebra associated with the Dupin Cyclide, tﬁe first two
arise from the focal conics with which the surface is Telated, and the last
distingmishes the partienlar Cyclide which is taken. Ft may be of use to give
a_brief elementary account, from the metrical point of view employed hy
Maxwell. But it should be remarked first that, from a descriptive point of
view, the matter iy extremely simple. We have scen (p. 165 of the text) that
the surface T, in four dimensions, studied in this chapter as the intersection
of two guadrics, may be defined as the surface whose prime sections correspond
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to plane cubic curves through five points. A particular case is that of the
cubic curves which touch two given lines of the plane in given points and pass
through the intersection of these lines. The general curve of this character
in'the plane (&, g, ), if the coordinates are suitably taken, is expressed
by the vanishing of an arbitrary linear funetion of Xy, ¥, Iy, T, %,
these being respectively &%, &%, &nl, &2, n(® (so that &5 =5/F1={/07).
Regarding X, ..., Z; as coordinates in space of four dimensions, we thus
obtain a surface which is the intersection of two line-cones, X,Z,= {72,
¥y Fi=0% It is the projection of this surface, from an arbitrary point not |
Iving thereon, on to an arbitrary threefold space, which is the Dupin Cyelide
discossed. Throngh the centre of projection there passes a quadric © eon-
taining the sarface given by the two linecones; as hefore, in the text| we
take the Ahsolute conic of the threefold space in which the Cyelide Heay b hie
on the conical sheet in which @ Is met by its tangent prime st the, centre of
projection. A plane cousisting entirely of peints of either of thestwo cones,
Xy &, =17, ¥ =72, meets the other vone in a conie; this lyivg on Q,
projects iuto a cirele; and there is a similar o1 of cireleg on/the Cyclide
arising feom planes Iying on the other cone. The axis gff€ither cone meets
the other cone in lwo points; the four points so eobtaingd, which are the
vertices of the tetrahedron X, ¥,2,T), in the prima\{I]:O, which contains
both axcs, are such that their four joining lines (etherthan the axes them-
selves) lie on both cones. These four pointey.p j jpﬂrﬁggfgﬁ our
nodes of the Dupin Cyclide, and the four joining lLines give t oat lines
Iving on the Cyclide. Evidently too the Dupin Cyelide is a projection of that
particular serface, of order 5, in five dimensions, which represents plane enbic
curves torching two given lines at given paints. .
Passing from this simple method of\presenting the theory, to consider the
motrieal theory, with rectangular opdrdinates (#, g, #) in erdinary iﬁa{:e, in
Maxwell's manner, we take the ellipse in z=0, with equation 2%+ y¥b%=1,
and the associated hyperbola i y=0, with equation a%/c®—2%ki=1, where
a>b>¢, (?=a? — B2} 6n theellipse we take an arbitrary point R, and on the
hyperbala we tuke an arbitéary point @; then, on the joining line B¢, we take
& point P whose distau(k 9, from @, exceeds the distance, @4, of @ from
the end, 4, of the majow axis of the ellipse, by ¢—u, where p I3 an arbitrary
constant, The Oyclife.¥s the hens of P. From the known properties of the
focal conice, we gan prove that the locns of £, as B varies on the ellipse, with
@ fixed on the kypecbola, is a eircle; and is, moreover, a live of curvatare on
the Cyelide, thé-chord @R being normal to the Cyclide at P. The locus of P,
as @ varigs\ow'the hyperbola, with R fixed on the ellipse, is another circle,
equally gilthe of curvature, at right angles to the former. Wher u<Ce, the
Cyelidédias two real sheets, very roughly, if the comparison may be permitted,
likesthg*surface of two bananas placed with the ends of either eoincident w_1th
#i®\dnds of the other. This is what Maxwell called the horned Cyefide, having
w0’ real nodes; these lie ou the focal ellipse in =0, When c<p<la, the
surface has a single real sheet, of the shape of a distorted anchor ring (it is
actuaily an anchor ring when ¢=G0); it has then no real nodes, When p > a,
the surface has two real sheets, one within the other, connected at two real
nades, which lie on the focal hyperbola in y=0. Proceeding to more detail, a
circle in the plane &#=0, with centre at = pcfe, y=0, and 1_'3"11“3 b (“gr— Fg)*a'"a:
has double coutact (rcal or not) with the ellipse, on the line w=pa/c; and a
circle, in the plane y=0, with centre at = pafe, =0, and_ra.dius bgﬂ-g“ o )if €y
has double contaet with the hyperbola on #=pecfa. The intersections of the
line x=pafe, x=0 with the e]fipse, and of the line w=pe/a, y=0 with the
hyperbola, are nodes of the Cyelide; and the four cross-joins of the first pair
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of nodes with the second pair, are lines, lying on the Cyclide, which meet the
Absolute conie. The two cireles spoken of are both real if e< p<Ce; they are
the two cireles from any peint of which the Cyelide can be inverted into an
anchor ring {or, in particular, an anchor ring into itself, one of the two
circles beiug then a line). A plane through the line x=pa/e, 2=0, drawn at
right angles to a tangent line of the focal hyperbela, cuts the right.circular
cone containing the focal ellipse of which this tangent line is the axis, in a
circle ; and the Cyclide may be regarded as the locus of such civeles. The
plane is evidently at right angles alse to the tangent liue of the hyperbola at
the opposite poiut of the hyperbola; it meets the Cyelide, altogether, in 4w\
circles. Likewise, cireles Iying onthe Cyclide are obtainable by planes drma
through another pair of nodes, at right angles to tangent lines of the dlipse.
Having shewn (it is ¢lear from its equation) that the Cyclide has thedhsolate
conic as a double curve, it follows that any sphere drawn through,a cirele
lying on the surface has, as residual intersection, a circle, so thatithe sphere
touches the surface at two points of the original circle. As a.partibular case,
the plane of any circle lying on the surface containg anothgr circle of the
surface, and tonches the surface in two points; and conversely.

Lvample. If the aggregate of the lines joiuing pbibds” of two conies in
ordinary space be represented in fivefold space (whete*the coordinales are
the line-coordinates of the joining lines), shew that)the locus obtained is the
intersection of dwendidbeakibrFakiig another psgnt of view, the conditions
that a congruence of lines in ordinary space slton}d consist of the normals of
a surface are considered by Bianchi, Geom. @iff) 1, 1920, p. 474.

p. 201, Ew. 5. The spheres of the twowgystems, if we apply Lie's trans-
formation (p. 556 of the fext), thus bicome generating lines of a quadric
surface. An sccount of the matter (hibordinary space, is given by Darboux,
Géom. analyt., 1817, p. 406, N

p. #13. By making the substifutions to line-coordinates, replacing izy, i,
iy &1, &g, @y respectivelyp by 14-4, mi ', nin', (-1, m—w', n—n {(of
P. 45, so that the vom lg}feﬁuatinn becomes @ ({24 1'% 32/ +eto. =0, with
a=k —ky, f=l+k, et& nild removing ¢, m', #’ by means of I't+m2 —ny=0,
etc., we have the coneof lines of the complex, which pass through the point
(#, ¥ =, #), given bpwhomogeneous quadratic in {, m, n. Expressing that
this is degeneratepe/find, for the locus of @, ¥, 2, 1,

abe (a*+ B4 1) — 2Rayxt +a F (P o+ 2715
\‘ + 56 (22 + 2 10+ o H (0P g2+ 215 =0,
where oW+ ci-(g— )2, ete., B=(g—B) (h—F) (f- ) +a(g— R+ ... buwe. It
can bawshewn that the coefficients depend on three numbers only.
The“enefficients %, ..., &y in the text are the rools of the discriminant of
hevquadric k02— 9, supposed to be all different. But there are manly
Particular cases, according te the relation of @' to Q. The possible simul-
tancous reduced forms for @ and €, in the cases in which not every quadric
k2~ Q'=01is a cone, may be found as in Vol. i, p. 248. A very obvious case
is that in which 0 touches @ in one point (the case dennted by 9, 9;9; %, 3.2 in
the enumeration reforred to), In this case, taking Q=1+ mm'+nr', we may
suppose the equation ©'=0'to be a linear Tunction of 54 {2, mZ+m?, nt, &,
mny, na', so that the quadrics meet where (7, m, m, 7/, m', w')=(0,0,0,0,0, 1)
and have the common tangent prime =10 at this point. The equation of the
Incus of the vertices of degenerate complex cones can then be shewu capable
of thfa form UV - W*=0, wherc, with certain eonstants a, 2, m, we have
Usa'tax®+ B8, V=y'4Be?+at?, W=ay+mzet; this Is of the form given
for the general case on p. 216 of the text, with the omission of the terms in
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&, o, #%y?.  Essentially it depends only on th ;
Pliink:er’s meridian su:ﬂ;}y"'ar:e. '\};?e consid};r sum: zﬁt;u;ﬁgﬁig?n%g{(?ﬁglh::
gual'tu;equ;ti;n laﬁ (P;‘Jrl L+ éa*ﬂ# ~mf) A =0, 01; which the mgts are of the
orme A, —A, A74 — A7, and putting @ =(8+a\*)®, b=(a+ BN, o=k, d=i
with the condition gb+med=0, which limits A 1A DT
surface has eight nodes ’ the possibiltios in sign, this
(¢, b, 0, d), {a, —b, —0,d), (b8, 4d,¢), (b, —a, —d,¢),

(a‘J h: -, _d), (a: _67 €, -d)) {b: a, "‘d, ‘-c), (b, — i, d, —0),
say A, B, €, Dand P, g, R, §, which form two Mocbius tetrads; they are the
points eommon to the quadries I7=0, V=0, # =0 (which at once proves them
to be nodes),  If we denste a linear function of #, g, =, ¢, viz. wo+ vy +wz K5,
by [, v, w, k], the planes of the first tetrad are £=0, y=0, {=0, r=0; anid/
of the second tetrad £ =0, v'=0, {'=0, r'=0, where £, g, {, + and £, yj,{’, =
are respectively the linear funetions A\

{CJ _ds L] —b],_ [cJ d; —i, _b]) [d’ -, -b: _'u]) {d; 03 ‘“?’3 '_a]:
and e, —d, —a, ], [e,d, 0, 8], [d, —&, -} a}; [c’i,@,ﬁ_; al.
The plane £=0 contains the nodes (B, G, D, P), the plape =0 contains the
nodes (¢, R, &, ), ete.; and each of the eight pla.gdes touches the aurface
alolg a couic. The quadrie, through the eight/fodes, with the equation
AR~ ZAW + V=0, breaks up into two E]anear wy&mblﬁmmg the, raoty of
the yuartic equation referred to, snd becomes, respectively, g =0, iy =0,
{E=0, r'=0; the four lines £#=0=¢§, n=0=y] etc., together with the two
lines s—0—¢ and a=0=y, are the degénerate form of the sextic locus
(Vol. zrt, p. 154, Ex. 6) of vertices of quadrigcones through the eight nodes. The
Jine #=0—¢ is a double line of the loglisy containing, as in general, four pinch
points, at which the tangent planesyof the suriace coincide; snch a line as
£=0=£ passes through one of these pineh points, and lies in the pinch plane;
the other three lines n=0=gf etc. pass gimilarly through the ‘Eth"‘i I:‘".wh
points (for pinck points, seepfor example, Vol. v, p. 176). The line joining
the nodes A, £ is & # e%‘ Jine of the surface, at every point of which the
tangent plane is the & , x-M=0; similarly the lines B, ?R’ D3 aze

torsal lines, with tadgent planes z+at=0, ete. . .

The equa:tian of he surface iz capable of the form {one of eight such)

D7 (Prute (Qrugt+ (Bt =0,
where P— () (i + b}y Q=(c—a) (ad—2c), P+Q+E=0, and
AN vy = dy—ot, ug=dztel, Ug=—ootd; _
i k, yultipt tively, an
if XA, T be proper coustant multiples of & 9, {; 7, TeSPEC y
4 m\;ff L ’, ;m', # he gjhe line-coordinates of the doub!e line ;:ﬁeerrfeudmto the
Ztetratiedron X YZT (i.e. ARCL), the last written equation is o .

' () XEP + ) PR 4L =9 D1 =0 o)
where E—IT4+mZ-nY¥, F=m'T+nX -z Gsﬂ'T-fg:Y;i]'?;;Y, t};JrZepto o8
£=0, F=0, =0, are the tangent planes of the surface aleng
i ing w, =0, uy=0, t3=0.

U}le. Sﬁeb:&ﬁit?fin of tti?e su}rfa?:e is also capable of the form (one of four sucfl)
(e X,Yf)} + (mm’ Y}’f)*} + (ﬂanZ’)i =0,..... Vei - m&:;) g
X', ¥', #' being proper constant multiples of £, ki ¢ ,JI‘EGZ]J;!C;;}# }};';!ﬂ, e
“259' - ;‘, @e=p—p, y=p—q, these are sach that X d= Taf +the ey c:f e
If we also take ¥"= — Xail~ Y§/m— Zyfn, the nodes are
tetrahedra X Y27, X'V 2T .
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Any plane through the double line meets the surface in a conic; if we can
find a rational curve on the surface having a single intersection with all snch
conies, the surface can be shewn to be rational (that is, the coordinates of a
print of it expressible rutionally in terms of twe parameters, cach of these
expressible as rational funetions of the coordinatesy; see the Note to p. 143,
Now a rational cubic curve can be drawn through the nodes 4, B, €, D, to
have the donble line for & chord, which shall pass through another arbitrary
point; if this last point be taken on the surface, the curve, which would else
have 18 intersections with the gquartic sarface, will lie entirely upon it
Precisely, with X, ¥, Z, 7, Lm0, I', 50, w's a, By v, 5 4, 1, B, F, Gas above,\
the equation of the surfice is satisfied, whatever 8, ¢ muy he, by

ByX|T=(8+pP(I'p—e)~!, wV[/T=(0+¢m'd-H"" A
a32/T=(0-+ 93 (W~ 9), O
where 6, f, g, all multiplied by 2%+m?4n"%, are respectively mw’—m'n,
i —wl, Im'—{'m. Tleeein, if 1= (VX +w'Y +n'Z), the patnmeéter ¢ is
expressible rationally by K7
(24w n?) Hp={E+m P0G, o\

so that I'p~e, m'd—f, n'p—g are, respectively, £IENNI, /I, and the
parameter 8 is such that 2674 is cqual to (g+7) XEL G p) YF+(p+ ¢} Z6.

v _ @l H ™ .
The formulae lead \%}&({? &Bljﬁ%llhlfg{f% p&?‘l.gr rH is 'eq’m to

ar XE4-rpYF+ pq@@.\

The verification that the equakbion (i), abovesTs ¥atisfied by these valnes, and
the consistency of the two forms for 4,«s’immediate. The conics on the
surface are then the curves along each ofwhich ¢ is constant, and there are
= rational cnbie curves along each o'f'whi’ch g iz constant. Further informa-
tion is given in the text, p. 143; alac™in Hudson, Kummer's Quartic Sunfuce,
1205, Chap. vr. N

. 814 (a). As a simple vesifigation of the equation found, we may notice
that in the case of a totrahcd:ml complex, for which ko =k, ky=ks, =4k,
the equation reduces to s'i‘*‘”zz =0, or (yz+ oty — (yz — 2= 0.

p. 21L(H). Bince (pfg,&)](mk,.-{—n) ig pm it {gm = pree B (e, +om )
the complexes obiaified by this substitotion are given with varring o by
S i=0, S (f+a) W =0, namely are an =! aggregate, these all giving
rise to the samé Bwnmer surface. In fact, allowing for the 15 constants
of a general linear transformation in ordinary space, a quartic surface with
16 nodessdepeiids on 84— 1615, or 3, constants, as in the text; bot a
qua.dra.tie%o'mplcx, expressed by a quadratic relation in 6 line-coordinates,
subjeqt’:fo one condition, depends on 20-1-15, or 4, constants.

}g.x?lg. For the word Prime, see the Note on p. 104,

P-"222. As a simple example, the locus of the singular points, and the
extvelope of the singular planes, for the quadratic complex given by

al +bm?+2h'm =0,
are expressed, respectively, by
(b=la?+a-ty) 22425180y =0, (¢~ lul4+5~1o%) p2— 28 lutur=10,
and the latter is the tangential eqmation of the former,

N

p. 225. 'The reader muy compare, Zeuthen, Zehrbuch der abzihienden
Methoden, 1914, pp. 154—158.

p. 226. The section, with the quadric @, of the plane joining the three
points (&3¢, (kifg:)s (179, is given by the equation 2k, (824 gl + (P (f)-
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This however reduces to £, a3 we see by expressing in partial fractions the
ralional function of ¢ giiven by (&2 +nf+{PF(€); thus the plane meets Q'
only on the join of the last two of the three points, counted doubly; whereas
a plane on Q which represents an ordinary peint of the Kummer surface
meets 9 in two distinet lines, as on p. 213 of the text. If we. seck the con-
ditions thut the conie in o, &y, #3, a3 there expressed, may be a repeated line,
it will be found that the conditions rednee to aymm b merg+cymyng=0,
reity b+ hanalo +eamy =0, dalymi+bydymgtealamy=0, where oy=rhks+Fkoky,
hy=hles + Feekey, cp="leskg+Tyk;.  Solution of these three equations leads to the
plane given on p. 226 of the text. For generalisation to any space of odd ,
dimensions, ¢f. Rosati, fiend. Lombarde (Milan}, xxxn, 1889, p. 1270, -

#. 284, In the projection considered, the planes, 4, of one system on dne
quadric @ (say ¢ +uy+vy=0) which mest the ether qnadric &' in twodJines;
are projected into planes of the space I, each containing two chords;(ﬁrOJec-
tions of the twoe lines) of the quintic curve; all these planes pass through one
point 4 of this curve, this point being on the plane, througlht the axis of
projection, which is of the game systers as the planes a on 0,7 The particular
planes @ which meet © each in a repeated lina project mth{a‘nes_ through 4
which have two contaects with the quintic corve. Thatthere'are sixteen snch
bitangent planes, for such a quintic curve, follows by projecting this curve
into @ plane quartie curve (which has then one deuhlepoint, the genus being
2. not generally n cusp). Cf Enriques-Chisia A &ﬁ?mﬁ%‘%ﬁﬁé,
P. 250. That there are 16 nodes of the Kummer surface i, ] the’ text,
- 226, put into connexion with the fact that the surface which ia the prime
seetion of the intersection (2, 2) con'ca:qs)&]mes_
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INDEX
{to pages; not ineluding the Appendix)

Anchor Ring, or Tore, and Dupin’s
Cyclide, 193, 199

Augle between two circles, in projec-
tion from a gnadrie, 7; unaltered
by inversion, 14

Apolar, or conjugate, linear com-
plexes, 425 apolar relation for
point of contact of Hart section, 76

Apollonius’s problem for circles, 66

Associated lines, five, in fourfold
space, 114 ; all met by planes, 120;
planes meeting these through any
point, 122 asscciated system of
five planes, 118

Bauer, on a quartic surface, 20

Beunett, theorem on circles through
threes of four points, 17; Hart
seclion, equations for, 86

Bertini, on Veronese's sorface, 54

Bitangents

156

_ Bobillier, theorem for pedal cir;flés,

22
Burkhardt, the group of ghlg\lines of
__a cubic surface, 105§ ™
Burnside: a figure dn fonrfold space,
105 ; the group {ob the lines of
eubio surfuce, %05'} juvariants of a
lincar group; 310
Caporali, fetrdhedral complexes con-
taining*aquadratic congruence, 242
Cardighd, 94
Carterian, 99

Gastelnuovo and Kronecker, surface

\'With double infinity of redueible
plane sections, 55

Caustic, or focal, surface of u quad-
ratic congruence, 226

Cayley, representation of a line by &
point of fivefold space, 40; on
Veronese's surface, 54; algebraic
solution of Malfatii’s problem, 68

Centre of a circle, in projection from
a quadric, 7

Chords common to two eurves, 51

Circle, obtained by projection of
plane section of a quadrie, 13

of Kummer's surface,
from lines of Segre’s cubic locugmy™

circle and two inverse points
changed futo same by inversion,
14; circle of similitude, obtained
by projection, 15; circles of simili-

- tde of the puirs of four circles,

15; circles in a plane, chainsof,
thenrems for, 29; circle pepreés
sented by a line of fourfold spact,
3%9; Hart and Feuerbagh‘sircles,
Chapter 1, p. 65; circles meeting
given circles at equalyoret given
angles, 67 ; three.i:ircfes with three
concurrent condien tangents, 67

Clifford, a thebcouyfor circles, 1, 31,

~

84,105 )

Complex, fetrahedral, determined by

"

N Plexes mutbally conjugate, 42;
i

Canfocal Cyelides,

Congruence of lines,

Lawigria fhbriads Hpwen; P20 iinear,
detprpiined by planes i

spade, 34; linear, represented in

\Avefpld space, 42 ; &ix linear com-

nes common to three, or to foor
linear complexes, 43, 44; linear,
point and polar plane represented
in fvefold space, 48; linear, gix
coujugate, eonstructed from aix
points, 139; linear, six conjugate,
from Jines of Segre's cubic locus,
155; linear, six conjugate, poles
of a plane lie on a conte, 204 3
quadratic, represented in fivefold
space, 213; ualdratic, condition
for singular point, 2143 uadratic,
ratio‘;ﬁity of, 234 ; tetra edral, in
fivefold space, 230, See also Focal
el cutﬁ:}g a{asﬁght
; tion for

angles, 181 ; equa o " aad
40; for chords of a curve,
E})a?s’num’ber of lines common to
two, 51; quadratic, i tangent
solid of Segre’s quartit.!_locEIS, 137;
#ix congruences asapciated with o
Kummer surface, 218, 228; quadf-
ratic, canstic oF _focal system ;_1,
295, six guadratic, equations for
common  Singuiar points, 226 é
quadratic, singular p_omi:fi an
planes,” 240; quadratic, les 10

Q"
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forty tetrahedral complexes, 242;
quadratic, and Mochius tetrads, 241
Conic: conies toucking fives of six
arbitrary lines, 1; triangularly
circumscribed fo six conies, 3, 5;
in an arhitrary plane, determined
by the jeins of five points, 11;
two conics in fivefold space which
are mutually conjugate, 43; conics
throngh a point of Segre’s quartic
locus, 127 ; conics lying on quartic
sirface in fourfold space, 171
Conjugate, or apolar, linear com-
plexes, 42 )
Cremona, triangularly eircumscribed
eonic and line coordinates, 6
Cubic curve: conic touching seven
lines assoclated with, 4 ; five arbi-
trary points on, 11; three tetrads
of points on, 28 ; tetrads of points
© determined by two points, 29;
chords of, represewietbrioufbatold
space, 52; in plane, through two
ointg, inverse of guartic with two
ouble points, 87
Cubic surface, with four double
points, theorem for, 28 ; group of

- " lines of, 104 ; cubic envelope, b_v.;.'
projection of Segre’s figure, 149%

by projestion of quartic surfage I
fourfold =pace, 173 4
Curvature, lines of ; upon a.(é?e
186 ; Dupin’s theorem
ral theorems for, 180 ;\1
equation for, 190
Curve, in a-fold S}{’cé; intersection
of (n—1) quadrics,”185
Cyclide : arisinfizby projection from
fourfold spage; 174 ; enveloped by
spheres, 175 ; as loens of Himiting
puiutsjof\ xed sphere and variable
tangent plane of a gnadrie, 176;
tdfigent planes of, at a point of
“ddtble conic, 177 ; four focal conics
of principal quadric surfaces, 178 ;
angle between enveloping spheres
of different systems, 1749; is in-
verted into itself from five centres,
179 ; four points of double curve
where tangent planes coincide,
180 ; three confocal through given
point, 181 ; equations for confocal
eyclides, 183 ; normal of, hy pro-
jection from fourfold space, 184 ;
lines ot curvature upon, - 186;

lide,
By gene-
erential

o
£

Index

spheres having stationary contact
with, 187 ; Dupin’s Cyclide, 190,
193, 199; with cuspidal conie,
192; by inversion of a guadrie,
192 ; with planes of symmetry,
193; general, irrational form of
eqnation, 194; with two double
points, inversion of, 194 ; with two
double points, equations for, 195
with four double points, equations
for, 198; a particular surfuee,
Kummer's equation for, 197 ; Du-
%in’s, treated  tangentially, (200

upin’s, points expressed by\twh
parameters, 202; lines of\elrva-
ture correspond to inflextedl curves
on Kummer's surfacey 231

\ O
Darboux: surface efititaining a doubly
infinite systemN\of conics, 54; on
plane quartk‘&orlwes, and Cyelides,

.orgf2; genetalifation of lines of cur-

3

vature, and“of geodesic lines, 150
a gendralisation of Dupin's Cyelide,
1985 _inversion of Dupin’s Cyclide,
200¢ on the existence of space of

Ufour dimensions, 200 5 congruences

“Yof lines, 225

Del Pezzo, onVeronese’ssurface, 54,55

Dickson, the group of the lines of a
cabic surface, 105

Director comies, for plane quartic
curve with two double points, are
confoecals, 91

Double four : of lines on guartic sur-
face in fourfold space, twenty such,
170; of planes, 238

Doublesix theorem, a= a theorem for
spheres, 58; proved in five-fold
space, 3

Double tangents of Kummer's sur-
face, 225

Dupin: theorem on lines of curva-
ture, 188; Dupin's Cyelide, 190,
193, 199, 201, 202. See Cyclide

Elte, on a six-dimensional polytope,
104

Feuerbach's theorem, 65 ; particular
caze of Hart's theorem, 78

Fi%ure: of twentyseven points in fonr-
ovld space, 104 ; of fifteen lines and
points in fourfold space, 113 ; aris-
ing from four arbitrary planes, 117



Index

Focal conics of a confoeal system of
quadrics, 92; descriptive form of
theorem of intervais, 103

Focal system: point and polar plane
represented in fivefold space, 48;

six vonjugate, scheme for, 133; -

arising in tangent solid of Segre's
quartic locus, 135. Bee Complex,
finear o
Foci of plane guartic curve with £wo
double points, 92
Foens, and focal line, of a singnlar
plane in fivefold space, 219
Fo;émné, theorem for pedal circles,
Fresnel's wave surface, 217

Gergonne, solntion of Apollonine's
problem, 66

Giipel, equation of Kummer's surface,
Bl -

216

Grace: geuneralisation of a theorem
for circles, &; theorem for pedal
circles, 23; theorem for spheres
touching planes, 58; Wallaces

theorem for space of even dimen-
- = . PR
siong, 59; theorem for six linesl™
with a eommen transversal, 60;von

systems of spheres, 105, 112\
Group, linear, in four homdgénsous
variables, 208 2

Harmonicinversios, withgmdamenta.l
point and solid,\B17; with two
fandamental Jplanes, 118;
fundamentalyline and plane, 118,
165 \¥ )

Harmonically’conjugate quadric, 72

Mart: t]j«;o\‘em for circles, 653 proof
of\Steiner’s solution of Malfatti’s
pfodlem, 68; Hart circle of three

w&itcles, orthogonal to their orthogo-

oanal vircle, 71; general case, 72, 75;
' apolar relation for point of confact,
¥6; Hart circle for spherical tri-
angle, 77; Feuaerbach cirele as par-
ticular case, 78; radins of Hart
section of a quadrie, 81 ; Hart sec-
tion of a-quadric, sufficient condi-
tion is necessary, 82; Hart eircle
of three circles, defined by avgles

of intersection, 89

" Haskell, generalisation of a theorem
for circles, 8 .

Hudson, on Kummer’s quartic sur-

face, 208, 227, 233

with -

271

Humbert, a eurve on the Weddle
surface, 234

Inflexional corves of a surface, 186}
differential equation for, 190; of
Eummer's surface, 222, 230; cor-
respond to lines of curvature on
Cyclide, 281

Invariants, represeutstive, for an in-
volution in threefold space, 209

Inversion in a plané, dedneed frm,
prajection in space, 12; of plape
quartic curve with twe (double

oints, $6; in general, {1785 of
. Cyelide, 179; of Cyclide with two -
double points, 194;, of Dupin’s Cy-
clide, to quadric cone of revolution,
201, See slso HePmonic inversion

Involation of sety.of sixteen points in

threefold spase, 208

Jam 1L L

Jess E%‘,ﬁ?é(()irlgrlr'la%l; b leh 6F Ster-
gootion of tangent circles of a

{N\gtiartic eurve, 99, 179

Jordan, the group of the lines of a
enbic gurface, 105

Klein: representation of a line by s
point of fivefold space, 40; Lie's
correspondence between sphere and
lines, 55; six conjugate I_menr com-
plexes, 202, 208; inflexional lfnes
of Kummer’s surface, 233; ration-
ality of quadratic complex, 235

Kronecker and Castelnuovo, surface
with double infinity of reducible

lane sections, 55 .

Ki?hne, generslisation of Wallace's
theorern, &

Kurmer, cones of, 177; equ
a particular Cyclide, 187 b

Kummer's quartic surface: Arislag
gection of Segre’s quartic locus wil
tangent solid, 139; 'bltallg_ellﬁ of,
from lines of Segre’® cubic loons,
156; from profile of Segre's cubic
locus, 156; snd Weddle's purface,
from four quadrice in threefold
space, 160; obteined by trane-
formation from fourfold space, 211;
as Joens of gingular poinis of 8
quadratic complex, 212; equation

axpreased a8 sull of five aqn_nm

915; range of six points _amocmble

with, 215 ; equation shewing dou

ation for
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points, 216; dual of, 217 ; repre-
sented in fivefold space, 218; 8ix
eongruences associated with, 2189,
223 ; tangent lines at a point, 221;
identical with envelope of singular
planes, 222; inflexional lines of,
222, 230, bitangents of, 224; from
confoeal complexes, 227 ; related
range of points and peneil of planes,
2928; intersections with a line of
fundamental complex, 228; inflex-
jonal curves correspond te lines of
curvature on Cyclide, 231 ; history
of, 214

Lachlan, Hart circle defined by angles
of intersection, 88

Larmor, A., circles arising from the
intersection of three circles, 82

Leathem, theorem for four coneyelic
points of a sphere, 101

Lexell, theorem, fi 6. . - i
“%1 J05 ‘](iﬁi"—a u‘I?HPXPL)%L = u]ﬂ‘gﬁp'-‘“ft.

points of a sphere,

Leyhourn’s Math, Repos., 10

Lic, correspondence of a gphere with
two liues, 5i; applied to Kummer's
surface and Cyelide, 233

Limacon, 99

by & point of fivefold space, 41_
Tine-cone, quadric, and poinj<come,

in fourfold space, 121 \
Linear complex. Sce Com oy lineay

Malfatti’s problem, 88N
Mannheim, inversion ef/Tlupin's Cy-
clide to Anchot\Ring, 200
Mantel, symmeiry, of five points, for
pedal propertyy 25
Maxzwell, Iglgfn’s Cyelide, 193, 198
Meridian/Suituce, Pllicker’s, 142
Migquel,\& theorem for cireles, 13
genesalisation of, 8
'Mﬁgi;s_’bius’s figure of two tetrads and
Wallace's theorem, 18; Moebius
;etra.ds and quadratic congruence,
41
MEI‘Q]B}', theorem for Fenerbach cirele,
7

Noether, raiionality of quadratic com-
plex, 235

Normal of Cyclide, by projection from
fourfold space, 184

Orr, theorem for four concyclie poiuts
of 4 gphere, 101

Index

Orthocentrie, Absolute conic for which
five points are, 11

Pedal cireles orthogonal to a fived
circle, 25; pedal propertyof cireum-
circle generalized to rational curve,
26; properties in threefold space,
24, 25, 27

Picard, surface whose plane sections
are rational, 55

Plicker's Meridian surface, 142

Point-cone, quadric, and line-vone,
in fourfold space, 121 2 AN

Polar system, by plane sectioabjonts
of five points, 10; polax Hueé of a
line, in regard to a igcal syktem, or
linear complex, 42; polariol a line
in regard to a quadrie; representod
in fivefold space,d®; polar lines,
in a focal system,*corresponding tu
the same spheye, 553 polar quadric

(J}'%{ Segre's P(:uhic locus,
&

Poncelet, on circles touching three
circles, 66

Prime, 219

,'Qu:;.dra.tic complex, See Complex,
Line, in threefold space, represented.y =

quudratic

Quadric: in fourfold space, lines of,
through a point, 37; in fivefold
apace, representing lines, 41; quad-
ric surface, generators of, repre-
sented by a conig in fivefold space,
43; in fivefold space, planes lying
on, 45; each its own polar plane,
47; quadric surface, number of
common points of twe curves o,
51; quadriesinn-fold space, through
given peints, 61; guadric gurface,
sectiony of, touching three sections,
65; equations of, 69; condition
four sectious of yuadric surface be
touched by four planes, 72; quadric
surface, harmounically econjugate,
72; equation of, 73; quadric sur-
face, radius of section of, with
respect to a point, 80; four sections
and four tangent sections, matual
relatinng, 84 ; angles hetween four
sections, 100; quadric surfaces with
ring coutact, theorem of intervals,
105; quadrie, in fonrfold space, in
1'0%:;1'{1 to which Hegre's figure I9
gelf-polar, 148, 149; quadric sur-
faces through five points give rise



Index

to Segre’s cubic locus, 152 ; system
derived from foar general quadrics,
160, quadric surfaces, ten, asso-
ciated with six conjugate linear
complexes, 206; sets of four with
two common generators, 207 ;
quadric surfage, generators touch-
ing curve of intersection with an-
other quadrie surface, 94, 170, 220,
223, 2245 quadric in fivefold space,
generation of, 287

Quartic curve, in a plane, with two
doohle points, 89; as envelope of
civeles, B0; focl of, 92; number of
tangents from a double point, 93;
relation between distances to three
coneyelic foel, 94; inversion inte
itself, or another such curve, 96;
with four foci in a line, 98; augles
of two tangent circles with variable
tangent circle, 99; general form of
theorem for angles between tangent
circles, 102

Quartic curve, in fourfold space, 120,
147 .

Quartic surface, with five domhle

points, from quartic surface with

fifteen double points, 169

Quartic surface, .in fourfold spatey ’

inlersection of two guadries, 1613
algebraic treatment, 162 ;/8ixteen
lines of, 164; representation on 2
plane, 165 ; desurip%f}? \theory of
lines on, 167, 189y sélf*polar pen-
tad for, 168; doublefours of lines
on, 170; notationfor lines, 170;
conics upon, five Pairs throngh each
point of s¥rfice, 171; other equa-
tions gjé"li‘ries, 185; lmes of, by
inters.& lon with a quartic locus,
18?3‘

_R40; co-residuation on quartic surface

¢\ fourfold space, 172

Related planes, three, variable plane
containing corresponding points,
145

Reye, triply infinite system of quadric

surfaces, 160

Riclinond, pedal property for gel:le_ral
rational curve, 25; figure avising
from six peints in fourfold space,
116

Roberts, generalisation of a theorem
for ciruie;s, 3 :

273

Rosenhain, equation of Kummer's
surface, 216

Salmon, radius of Hart circle on a
sphere, 80

Schoute, on a six-dimensional poly-
tope, 105

Begre, tetrahedral and linear com-
plex, from planes ia fonrfold space,
36; representation of conics i
fivefold space; on Veronese's sur
face, 54, loci of third order in
fourfold space, 11; theoremi of,
five planes meeting six lines; 2434
theorem for a Cyclide, 180; general
investigation of Cyelides; 172;
degenerate forms, 190"

Segre’s figure, of fifteén” points and
Iines in fourfold“space, 113, 203;
by transformgdtion from fivefold
space, 20i§2number notation for

liny ide., 114; singular
oy s e
provedalgebraically, 115; six sys-
tem®of planes, two of any system
o through a point, 123; locus for
{\\which two planes coincide, 123;
planes fonng algebraically, 124;
planes of a system meeting sn
arbitrary line, 136; reciprocating
quadrie for, 148
Segre’s cubic locus in fourfold space,
regarded es o dual, 1515 obtained
from quadrie surfaces through five
points, 152 ; theorem for lines
upon, 155; from fivefold space, 160
Segre’s quartie locns in fourfold
space, irrational equation of, 125 ;
ig rational, 126 ; six conice through
a point met by lines in related
ranges, 127 tangent solid, 128;
contains & symmetrical figure of
gixteen points and planes, 130,
134 ; thirty-two related ranges in,
intersection with tangent

131; :
solid, 138; perticular form of
equation, 142; tangential equation,

159;

148; and Weddle gurfuce,

representing an involution of three-

1d space, 210
Sefriri, aurfa::e with no chords through
arbitrary point, 86
Similitude, cirele of, obtained by pro-
jection, 15; centres of similitude
for two circles, 66
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Solid, 104

Sphere, determined by section of
quadric in fourfold space, 36 ; cen-
tre of, by projection, 39; repre-
sented by a point of fourfold space,
39; angle of intersection of two
spheres, 39; touching four given
gpheres, or planes, 57, 58; en-
veloping a Cyclide, 175

Steiner : 5 theorem for two triads of
points, 21; Steiner’s guartic sur-
face, 54 ; by projection from four-
fold space, or from fivefold space,
191 ; cireles cutting three given
circles at given angles, 67 ; solu-
tion of Malfatti's problem, 68

Stéphanos, fignre of fifteen vircles, in
anticipation of Segre, 116, 203

Study, mutual relations of fonr cir-
¢les and four tangent circles, 86

Index

Transversals of two lines, and points
of a quadric surface, 31
Triangularly cireumscribed conie, 2, §

Vaidyanathaswamy, property of a
cubic curve, 147

Veronese's surface in fivefold space,
conics thereon, 52, &4} projecting
to Steiner’s guartic surface, 191
theorem of reciprocity of a generals
figure, 149

N

Wakeford, on the theoremd ‘of.\a
double-six of lines, 6; six)conics
triangularly circumscribed io au-
other, 32; theorem &orysix lines
with a common trangyersal, 60

Wallace's theoremy\and Moebiug's
figure of two tetwals, 18 ; addilions
to, 21 ; generalised, 10, 58

Wave surfgea}or tetrahedroid, 217

Taylor's theorefd;ﬂfbtwcﬁbiﬁyhbnaﬁgm)rg!ﬁeber’s tgehrem , construction of six
af

in regard to six conics, &

Tetrads, Moebius, mutually inseribed,
theorem for four, 141; fifteen
associated with six conjugate linear

¢ complexes, 206 ; property of tetrad
in regard io a line, considered im, ™

fivefold space, 230
Tetrahedral complex, detep@ined
from planes in fourfold spage; 32 ;
in fivefold space, 239 ¢ ¢\.J :
Tetrahedroid, or Waye suztace, 217
Tore, or Anchor Riggy, sand Dupin’s
Cyclide, 193, 199 ~
\Y¥

7,

/2
%
\z

conjugate linear complexes. from
six/peinis, 134
Weddle's surface, origin of, 156;

~oequation of, 158; from Segre's

% quartic locus, 159 ; and Komimer's
gurface, from four guadrics in
threefold space, 160, correspond-
enee of conjugate directions, 233

White, equation of a conic triangu-
larly circumseribed to six couics,
54 proof of Clifford’s chain of
theorems for circles, 64
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